Title:
algorithms-for-nonlinear-equations Download
Description: A collection of algorithms for solving nonlinear equations root, including the the Newton iteration dichotomy, fixed point iteration method.
To Search:
File list (Check if you may need any files):
MATLAB语言常用算法程序集\autorun.exe
........................\autorun.inf
........................\comctl32.ocx
........................\command.ini
........................\MSCOMCTL.OCX
........................\PHEI Broadview 2009-2010专业书目.pdf
........................\phei.avi
........................\readme.doc
........................\Settings.ini
........................\光盘的算法程序索引.xls
........................\第10章 非线性方程组求解\DiffParam1.m
........................\........................\DiffParam2.m
........................\........................\mulBFS.m
........................\........................\mulConj.m
........................\........................\mulDamp.m
........................\........................\mulDFP.m
........................\........................\mulDiscNewton.m
........................\........................\mulDNewton.m
........................\........................\mulFastDown.m
........................\........................\mulGSND.m
........................\........................\mulGXF1.m
........................\........................\mulGXF2.m
........................\........................\mulMix.m
........................\........................\mulNewton.m
........................\........................\mulNewtonSOR.m
........................\........................\mulNewtonStev.m
........................\........................\mulNumYT.m
........................\........................\mulRank1.m
........................\........................\mulSimNewton.m
........................\........................\mulStablePoint.m
........................\........................\mulVNewton.m
........................\........................\SOR.m
........................\...1章 解线性方程组的直接法\conjgrad.m
........................\............................\Crout.m
........................\............................\Doolittle.m
........................\............................\followup.m
........................\............................\GaussJordanXQ.m
........................\............................\GaussXQAllMain.m
........................\............................\GaussXQByOrder.m
........................\............................\GaussXQLineMain.m
........................\............................\InvAddSide.m
........................\............................\qrxq.m
........................\............................\SymPos1.m
........................\............................\SymPos2.m
........................\............................\SymPos3.m
........................\............................\Yesf.m
........................\...2章 解线性方程组的迭代法\BGS.m
........................\............................\BJ.m
........................\............................\BSOR.m
........................\............................\conjgrad.m
........................\............................\crs.m
........................\............................\fastdown.m
........................\............................\gauseidel.m
........................\............................\grs.m
........................\............................\jacobi.m
........................\............................\JOR.m
........................\............................\preconjgrad.m
........................\............................\richason.m
........................\............................\rs.m
........................\............................\SOR.m
........................\............................\SSOR.m
........................\............................\twostep.m
........................\...3章 随机数生成\AELDist.m
........................\..................\BenuliDist.m
........................\..................\BGDist.m
........................\..................\CauthyDist.m
........................\..................\CombineLinear.m
........................\..................\GaussDist.m
........................\..................\LaplaceDist.m
...........