Description: Convolutional neural network for handwriten digits recognition: training
and simulation.
This program implements the convolutional neural network for MNIST handwriten
digits recognition, created by Yann LeCun. CNN class allows to make your
own convolutional neural net, defining arbitrary structure and parameters.
To Search:
File list (Check if you may need any files):
mycnn
.....\license.txt
.....\mycnn
.....\.....\CNN
.....\.....\...\@cnn
.....\.....\...\....\adapt_dw.m
.....\.....\...\....\calcMCR.m
.....\.....\...\....\calchx.m
.....\.....\...\....\calcje.m
.....\.....\...\....\check_finit_dif.m
.....\.....\...\....\cnn.m
.....\.....\...\....\cnn_size.m
.....\.....\...\....\cutrain.m
.....\.....\...\....\init.m
.....\.....\...\....\rbm.m
.....\.....\...\....\sim.m
.....\.....\...\....\subsasgn.m
.....\.....\...\....\subsref.m
.....\.....\...\....\train.m
.....\.....\...\back_conv2.m
.....\.....\...\back_subsample.m
.....\.....\...\changelog.txt
.....\.....\...\cnet.mat
.....\.....\...\cnet_tool.m
.....\.....\...\cnn2singlestruct.m
.....\.....\...\cnn_gui.fig
.....\.....\...\cnn_gui.m
.....\.....\...\cucalcMCR.m
.....\.....\...\cutrain_cnn.m
.....\.....\...\fastFilter2.m
.....\.....\...\license.txt
.....\.....\...\preproc_data.m
.....\.....\...\preproc_image.m
.....\.....\...\rand_std.m
.....\.....\...\readMNIST.m
.....\.....\...\readMNIST_image.m
.....\.....\...\readme.txt
.....\.....\...\rot180.m
.....\.....\...\singlestruct2cnn.m
.....\.....\...\subsample.m
.....\.....\...\tansig_mod.m
.....\.....\...\test_dgt.m
.....\.....\...\train_cnn.m
.....\.....\...\ver 0.8.zip
.....\.....\license.txt
.....\ver 0.8
.....\.......\@cnn
.....\.......\....\adapt_dw.m
.....\.......\....\calcMCR.m
.....\.......\....\calchx.m
.....\.......\....\calcje.m
.....\.......\....\check_finit_dif.m
.....\.......\....\cnn.m
.....\.......\....\cnn_size.m
.....\.......\....\cutrain.m
.....\.......\....\init.m
.....\.......\....\sim.m
.....\.......\....\subsasgn.m
.....\.......\....\subsref.m
.....\.......\....\train.m
.....\.......\back_conv2.m
.....\.......\back_subsample.m
.....\.......\changelog.txt
.....\.......\cnet.mat
.....\.......\cnet_tool.m
.....\.......\cnn2singlestruct.m
.....\.......\cnn_gui.fig
.....\.......\cnn_gui.m
.....\.......\cucalcMCR.m
.....\.......\cutrain_cnn.m
.....\.......\fastFilter2.m
.....\.......\license.txt
.....\.......\preproc_data.m
.....\.......\preproc_image.m
.....\.......\rand_std.m
.....\.......\readMNIST.m
.....\.......\readMNIST_image.m
.....\.......\readme.txt
.....\.......\rot180.m
.....\.......\singlestruct2cnn.m
.....\.......\subsample.m
.....\.......\tansig_mod.m
.....\.......\test_dgt.m
.....\.......\train_cnn.m
.....\.......\ver 0.8.zip