Description: explore how this can be calculated efficiently using the FFT. This entails understanding the
difference between linear and circular convolution. We will explore using the FFT and compare it with a conventional
direct implementation of the convolution. To obtain the greatest advantage of the fft all the filters that we will use
have a sample length that is an integer power of 2. In general, it is always possible to pad an FIR filter with zeros to
achieve this.
To Search:
File list (Check if you may need any files):
Filename | Size | Date |
---|
LAB4\HallIR.wav | 65580 | 2015-11-04
|
LAB4\intercomIR.wav | 4140 | 2015-11-04
|
LAB4\lab4.docx | 204635 | 2015-11-09
|
LAB4\me4_1.m | 355 | 2017-11-06
|
LAB4\my_direct_convolution.m | 398 | 2017-11-06
|
LAB4\my_fast_convolution.m | 966 | 2017-11-06
|
LAB4\my_fft_convolution.m | 536 | 2017-11-06
|
LAB4\PGEE11108_session4.pdf | 74887 | 2015-11-01
|
LAB4\s4_1.m | 662 | 2017-11-06
|
LAB4\s4_2.m | 647 | 2017-11-06
|
LAB4\s4_3.m | 626 | 2017-11-06
|
LAB4\s4_4.m | 262 | 2017-11-06
|
LAB4\s4_5.m | 627 | 2017-11-06
|
LAB4\s4_6.m | 700 | 2017-11-06
|
LAB4\telephoneIR.wav | 2092 | 2014-10-07
|
LAB4\Thumbs.db | 17408 | 2015-11-01
|
LAB4\trumpet.wav | 200044 | 2014-10-07
|
LAB4\tu.docx | 194293 | 2017-11-06 |