Introduction - If you have any usage issues, please Google them yourself
Recently the sparse representation (or coding) based classifi cation (SRC) has been successfully used in face recognition. In SRC, the testing image is represented as
a sparse linear combination of the training samples, and
the representation fi delity is measured by the 2-norm or
1-norm of coding residual. Such a sparse coding model
actually assumes that the coding residual follows Gaus-
sian or Laplacian distribution, which may not be accurate
enough to describe the coding errors in practice. In this
paper, we propose a new scheme, namely the robust sparse
coding (RSC), by modeling the sparse coding as a sparsity-
constrained robust regression problem. The RSC seeks for
the MLE (maximum likelihood estimation) solution of the
sparse coding problem, and it is much more robust to out-
liers (e.g., occlusions, corruptions, etc.) than SRC. An
effi cient iteratively reweighted sparse coding algorithm is
proposed to solve the RSC model. Extensive