Introduction - If you have any usage issues, please Google them yourself
This paper establishes a distributed cooperative control framework for multiple dc-ESs in a dc microgrid and presents the small-signal stability analysis of the system. The primary level implements a droop control to coordinate the operations of multiple dc-ESs. The secondary control is based on a consensus algorithm to regulate the dc-bus voltage reference, incorporating the state-of-charge (SOC) balance among dc-ESs. With the design, the cooperative control can achieve average dc-bus voltage consensus and maintain SOC balance among different dc-ESs using only neighbor-to-neighbor information. Furthermore, a small-signal model of a four dc-ESs system with the primary and secondary controllers is developed. The eigenvalue analysis is presented to show the effect of the communication weight on system stability.