File list (Check if you may need any files):
计算机常用数值计算算法与程序 c++版
..................................\Chap01
..................................\......\Comm.cpp
..................................\......\Comm.dsp
..................................\......\Comm.dsw
..................................\......\Comm.ncb
..................................\......\Comm.opt
..................................\......\Comm.plg
..................................\......\Debug
..................................\Chap02
..................................\......\ComplexExample.cpp
..................................\Chap03
..................................\......\rand.cpp
..................................\......\rand_01_One.cpp
..................................\......\rand_01_Series.cpp
..................................\......\rand_ab_One.cpp
..................................\......\rand_ab_Series.cpp
..................................\......\rand_NormalDistributing_One.cpp
..................................\......\rand_NormalDistributing_Series.cpp
..................................\Chap04
..................................\......\FractionValue.cpp
..................................\......\PolyDiv.cpp
..................................\......\PolyMultip.cpp
..................................\......\PolyValueOneDim.cpp
..................................\......\PolyValueOneDimGroup.cpp
..................................\......\PolyValueTwoDim.cpp
..................................\Chap05
..................................\......\GeneralizedInversionSingularValue.cpp
..................................\......\MatrixDeterminant.cpp
..................................\......\MatrixExample.cpp
..................................\......\MatrixInversionGS.cpp
..................................\......\MatrixLU.cpp
..................................\......\MatrixQR.cpp
..................................\......\MatrixRank.cpp
..................................\......\MatrixSingularValue.cpp
..................................\......\MatrixSymmetry.cpp
..................................\......\MatrixSymmetryRegular.cpp
..................................\......\MatrixSymmetryRegularCholesky.cpp
..................................\......\MatrixSymmetryRegularInversion.cpp
..................................\......\MatrixToeplitzInversionTrench.cpp
..................................\......\MatrixTranspose.cpp
..................................\Chap06
..................................\......\EigenvalueVectorHessenbergQR.cpp
..................................\......\EigenvalueVectorRealSymmetryJacobi.cpp
..................................\......\EigenvalueVectorRealSymmetryJacobiB.cpp
..................................\......\EigenvalueVectorRealTriangleQR.cpp
..................................\......\HessenbergTransform.cpp
..................................\......\HouseholderTransform.cpp
..................................\Chap07
..................................\......\LE_GaussSeidelIteration.cpp
..................................\......\LE_IllConditionedEquation.cpp
..................................\......\LE_LinearLeastSquareGeneralizedInverse.cpp
..................................\......\LE_LinearLeastSquareHouseholder.cpp
..................................\......\LE_SparseEuationTotalChoiceGaussJordan.cpp
..................................\......\LE_StrapEquationGauss.cpp
..................................\......\LE_SymmetryEquation.cpp
..................................\......\LE_SymmetryRegularEuationConjugateGradient.cpp
..................................\......\LE_SymmetryRegularEuationSquareRoot.cpp
..................................\......\LE_ToeplitzEuationLevinson.cpp
..................................\......\LE_TotalChoiceGauss.cpp
..................................\......\LE_TotalChoiceGaussJordan.cpp
..................................\......\LE_TridiagonalEquationGauss.cpp
..................................\Chap08
..................................\......\RootAitken.cpp
..................................\......\RootFraction.cpp
..................................\......\R