Welcome![Sign In][Sign Up]
Location:
Downloads SourceCode Mathimatics-Numerical algorithms matlab
Title: MATLAByuanchengxu Download
 Description: " MATLAB language commonly used algorithm for assembly," the source book
 Downloaders recently: [More information of uploader yina__5211]
 To Search:
File list (Check if you may need any files):
《MATLAB语言常用算法程序集》一书的源程序
........................................\光盘使用说明.doc
........................................\光盘的算法程序索引.xls
........................................\第10章  非线性方程组求解
........................................\........................\DiffParam1.m
........................................\........................\DiffParam2.m
........................................\........................\mulBFS.m
........................................\........................\mulConj.m
........................................\........................\mulDamp.m
........................................\........................\mulDFP.m
........................................\........................\mulDiscNewton.m
........................................\........................\mulDNewton.m
........................................\........................\mulFastDown.m
........................................\........................\mulGSND.m
........................................\........................\mulGXF1.m
........................................\........................\mulGXF2.m
........................................\........................\mulMix.m
........................................\........................\mulNewton.m
........................................\........................\mulNewtonSOR.m
........................................\........................\mulNewtonStev.m
........................................\........................\mulNumYT.m
........................................\........................\mulRank1.m
........................................\........................\mulSimNewton.m
........................................\........................\mulStablePoint.m
........................................\........................\mulVNewton.m
........................................\........................\SOR.m
........................................\第11章  解线性方程组的直接法
........................................\............................\conjgrad.m
........................................\............................\Crout.m
........................................\............................\Doolittle.m
........................................\............................\followup.m
........................................\............................\GaussJordanXQ.m
........................................\............................\GaussXQAllMain.m
........................................\............................\GaussXQByOrder.m
........................................\............................\GaussXQLineMain.m
........................................\............................\InvAddSide.m
........................................\............................\qrxq.m
........................................\............................\SymPos1.m
........................................\............................\SymPos2.m
........................................\............................\SymPos3.m
........................................\............................\Yesf.m
........................................\第12章  解线性方程组的迭代法
........................................\............................\BGS.m
........................................\............................\BJ.m
........................................\............................\BSOR.m
........................................\............................\conjgrad.m
........................................\............................\crs.m
........................................\............................\fastdown.m
........................................\............................\gauseidel.m
........................................\............................\grs.m
........................................\............................\jacobi.m
........................................\............................\JOR.m
........................................\............................\preconjgrad.m
...

CodeBus www.codebus.net