Description: It contain a lot of good marlab programs, including those for numerical differentiation, numerical integration, nonlinear equations to solve, and so
To Search:
File list (Check if you may need any files):
MatLAB的一些算法算法\差分算法实现以及粒子群优化算法介绍\matlab的差分算法实现以及粒子群优化算法介绍.doc
....................\禁忌搜索,遗传算法,神经网络-MATLAB程序合集\简单函数优化的遗传算法程序\cro.m
....................\...........................................\..........................\ft.m
....................\...........................................\..........................\ga.m
....................\...........................................\..........................\init.mat
....................\...........................................\..........................\main.m
....................\...........................................\..........................\mut.m
....................\...........................................\..........................\n2to10.m
....................\...........................................\..........................\objf.m
....................\...........................................\..........................\pro.m
....................\...........................................\..........................\sel.m
....................\第10章 非线性方程组求解\DiffParam1.m
....................\........................\DiffParam2.m
....................\........................\mulBFS.m
....................\........................\mulConj.m
....................\........................\mulDamp.m
....................\........................\mulDFP.m
....................\........................\mulDiscNewton.m
....................\........................\mulDNewton.m
....................\........................\mulFastDown.m
....................\........................\mulGSND.m
....................\........................\mulGXF1.m
....................\........................\mulGXF2.m
....................\........................\mulMix.m
....................\........................\mulNewton.m
....................\........................\mulNewtonSOR.m
....................\........................\mulNewtonStev.m
....................\........................\mulNumYT.m
....................\........................\mulRank1.m
....................\........................\mulSimNewton.m
....................\........................\mulStablePoint.m
....................\........................\mulVNewton.m
....................\........................\SOR.m
....................\...1章 解线性方程组的直接法\conjgrad.m
....................\............................\Crout.m
....................\............................\Doolittle.m
....................\............................\followup.m
....................\............................\GaussJordanXQ.m
....................\............................\GaussXQAllMain.m
....................\............................\GaussXQByOrder.m
....................\............................\GaussXQLineMain.m
....................\............................\InvAddSide.m
....................\............................\qrxq.m
....................\............................\SymPos1.m
....................\............................\SymPos2.m
....................\............................\SymPos3.m
....................\............................\Yesf.m
....................\...2章 解线性方程组的迭代法\BGS.m
....................\............................\BJ.m
....................\............................\BSOR.m
....................\............................\conjgrad.m
....................\............................\crs.m
....................\............................\fastdown.m
....................\............................\gauseidel.m
....................\............................\grs.m
....................\............................\jacobi.m
....................\............................\JOR.m
....................\............................\preconjgrad.m
....................\............................\richason.m
....................\............................\rs.m
....................\............................\SOR.m
....................\............................\S