Description: A set (e.g. an image) is called "fractal" if it displays self-similarity: it can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole.
A possible characterisation of a fractal set is provided by the "box-counting" method: The number N of boxes of size R needed to cover a fractal set follows a power-law, N = N0 * R^(-DF), with DF<=D (D is the dimension of the space, usually D=1, 2, 3).
DF is known as the Minkowski-Bouligand dimension, or Kolmogorov capacity, or Kolmogorov dimension, or simply box-counting dimension.
File list (Check if you may need any files):
boxcount\Apollonian_gasket.gif
........\boxcount.m
........\Contents.m
........\demo.m
........\dla.gif
........\fractal_tree.jpg
........\html
........\....\demo.html
........\....\demo.png
........\....\demo_01.png
........\....\demo_02.png
........\....\demo_03.png
........\....\demo_04.png
........\....\demo_05.png
........\....\demo_06.png
........\....\demo_07.png
........\....\demo_08.png
........\....\demo_09.png
........\....\demo_10.png
........\....\demo_11.png
........\....\demo_12.png
........\....\demo_13.png
........\....\demo_14.png
........\....\demo_15.png
........\....\demo_16.png
........\....\Thumbs.db
........\randcantor.m
........\Thumbs.db