Welcome![Sign In][Sign Up]
Location:
Downloads SourceCode Mathimatics-Numerical algorithms matlab
Title: mitmatlab Download
 Description: It can inmplement several classic classification algrorithm(ID3,C4.5,etc.)
File list (Check if you may need any files):
mitmatlab(分类)\mitmatlab\About.bmp
.................\.........\Ada_Boost.m
.................\.........\ADDC.m
.................\.........\AGHC.m
.................\.........\Backpropagation_Batch.m
.................\.........\Backpropagation_CGD.m
.................\.........\Backpropagation_Quickprop.m
.................\.........\Backpropagation_Recurrent.m
.................\.........\Backpropagation_SM.m
.................\.........\Backpropagation_Stochastic.m
.................\.........\Balanced_Winnow.m
.................\.........\Bayesian_Model_Comparison.m
.................\.........\Bhattacharyya.m
.................\.........\BIMSEC.m
.................\.........\C4_5.m
.................\.........\calculate_error.m
.................\.........\calculate_region.m
.................\.........\CART.m
.................\.........\CARTfunctions.m
.................\.........\Cascade_Correlation.m
.................\.........\Chernoff.m
.................\.........\chess.mat
.................\.........\Classification.txt
.................\.........\classification_error.m
.................\.........\classifier.m
.................\.........\classifier.mat
.................\.........\classifier_commands.m
.................\.........\click_points.m
.................\.........\clouds.mat
.................\.........\Competitive_learning.m
.................\.........\Components_without_DF.m
.................\.........\Components_with_DF.m
.................\.........\contents.m
.................\.........\decision_region.m
.................\.........\Deterministic_annealing.m
.................\.........\Deterministic_Boltzmann.m
.................\.........\Deterministic_SA.m
.................\.........\Discrete_Bayes.m
.................\.........\Discriminability.m
.................\.........\DSLVQ.m
.................\.........\EM.m
.................\.........\enter_distributions.m
.................\.........\enter_distributions.mat
.................\.........\enter_distributions_commands.m
.................\.........\feature_selection.m
.................\.........\feature_selection.mat
.................\.........\Feature_selection.txt
.................\.........\feature_selection_commands.m
.................\.........\FindParameters.m
.................\.........\FindParameters.mat
.................\.........\FindParametersFunctions.m
.................\.........\find_classes.m
.................\.........\FishersLinearDiscriminant.m
.................\.........\fuzzy_k_means.m
.................\.........\GaussianParameters.m
.................\.........\GaussianParameters.mat
.................\.........\generate_data_set.m
.................\.........\Genetic_Algorithm.m
.................\.........\Genetic_Culling.m
.................\.........\Genetic_Programming.m
.................\.........\Gibbs.m
.................\.........\HDR.m
.................\.........\high_histogram.m
.................\.........\Ho_Kashyap.m
.................\.........\ICA.m
.................\.........\ID3.m
.................\.........\index(1).htm
.................\.........\index.htm
.................\.........\Infomat.m
.................\.........\Interactive_Learning.m
.................\.........\Kohonen_SOFM.m
.................\.........\Koller.m
.................\.........\k_means.m
.................\.........\Leader_Follower.m
.................\.........\LMS.m
.................\.........\load_file.m
.................\.........\Local_Polynomial.m
.................\.........\LocBoost.m
.................\.........\LocBoostFunctions.m
.................\.........\loglikelihood.m
.................\.........\LS.m
.................\.........\LVQ1.m
.................\.........\LVQ3.m
.................\.........\make_a_draw.m
.................\.........\Marginalization.m
.................\.........\MDS.m
.................\.........\Minimum_Cost.m
.................\.........\min_spanning_tree.m
.................\.........\ML.m
.................\.........\ML_diag.m
.................\.........\ML_II.m
.................\.........\multialgorithms.m
.................\..

CodeBus www.codebus.net