Description: Computes the fast kurtogram of signal x.This fast algorithm uses a pyramidal decomposition of the signal into a user-specified number of levels (a good choice is nlevel = 8). The first level is the classical kurtosis of the signal, the second level is the spectral kurtosis in 2 octaves, the third level the spectral kurtosis in 4 half-octaves, etc. Non-integer levels refer to divisions into third octaves. Here below is an illustration on how the frequency band is successively split when increasing the level
To Search:
- [Kurtogram] - fast algorithm uses a pyramidal decompos
File list (Check if you may need any files):
Pack Kurtogram\Pack Kurtogram V3\binary.m
..............\.................\DBFB.m
..............\.................\demo_Fast_Kurtogram.m
..............\.................\Fast_Kurtogram.m
..............\.................\Find_stft_kurt.m
..............\.................\Find_wav_kurt.m
..............\.................\Kf_fft.m
..............\.................\Kf_W.m
..............\.................\kurt.m
..............\.................\K_wpQ.m
..............\.................\K_wpQ_filt.m
..............\.................\K_wpQ_filt_local.m
..............\.................\K_wpQ_local.m
..............\.................\max_IJ.m
..............\.................\raylinv.m
..............\.................\TBFB.m
..............\.................\VOIE1.MAT
..............\ReadmeFK.rtf
..............\Pack Kurtogram V3
Pack Kurtogram