Description: For inverting a matrix, Gauss-Jordan elimination is about as efficient as any other method. For solving sets of linear equations, Gauss-Jordan elimination produces both the solution of the equations for one or more right-hand side vectors b, and also the matrix inverse A(-1). However, its principal weaknesses are (i) that it requires all the right-hand sides to be stored and manipulated at the same time, and (ii) that when the inverse matrix is not desired, Gauss-Jordan is three times slower than the best alternative technique for solving a single linear set.
To Search:
File list (Check if you may need any files):
gaussj.cpp
nr.h
nrtypes.h
nrutil.h
xgaussj.cpp