Welcome![Sign In][Sign Up]
Location:
Downloads SourceCode Mathimatics-Numerical algorithms matlab
Title: deblurring_demo-1.0 Download
 Description: Bayesian Deblurring with Integrated Noise Estimation Conventional non-blind image deblurring algorithms involve natural image priors and maximum a-posteriori (MAP) estimation. As a consequence of MAP estimation, separate pre-processing steps such as noise estimation and training of the regularization parameter are necessary to avoid user interaction. Moreover, MAP estimates involving standard natural image priors have been found lacking in terms of restoration performance. To address these issues we introduce an integrated Bayesian framework that unifies non-blind deblurring and noise estimation, thus freeing the user of tediously pre-determining a noise level. A samplingbased technique allows to integrate out the unknown noise level and to perform deblurring using the Bayesian minimum mean squared error estimate (MMSE), which requires no regularization parameter and yields higher performance than MAP estimates when combined with a learned highorder image prior. A quan
 Downloaders recently: [More information of uploader 孙文义]
 To Search:
File list (Check if you may need any files):
 

deblurring_demo
...............\+learned_models
...............\...............\cvpr_3x3_foe.m
...............\...............\cvpr_pw_mrf.m
...............\+pml
...............\....\+distributions
...............\....\..............\@discrete
...............\....\..............\.........\discrete.m
...............\....\..............\.........\eval.m
...............\....\..............\.........\kl_divergence.m
...............\....\..............\.........\mle.m
...............\....\..............\.........\plot.m
...............\....\..............\.........\private
...............\....\..............\.........\.......\montecarlo.m
...............\....\..............\.........\sample.m
...............\....\..............\.........\semilogy.m
...............\....\..............\.........\test
...............\....\..............\.........\....\test_all.m
...............\....\..............\@foe
...............\....\..............\....\energy.m
...............\....\..............\....\eval.m
...............\....\..............\....\foe.m
...............\....\..............\....\log_grad_x.m
...............\....\..............\....\unnorm.m
...............\....\..............\@gsm
...............\....\..............\....\em.m
...............\....\..............\....\eval.m
...............\....\..............\....\gsm.m
...............\....\..............\....\log_grad_weights.m
...............\....\..............\....\log_grad_x.m
...............\....\..............\....\sample.m
...............\....\..............\....\test
...............\....\..............\....\....\test_all.m
...............\....\..............\....\....\test_density.m
...............\....\..............\....\....\test_ho_derivatives.m
...............\....\..............\....\z_distribution.m
...............\....\..............\@gsm_foe
...............\....\..............\........\cd.m
...............\....\..............\........\energy_grad_J_tilde.m
...............\....\..............\........\energy_grad_weights.m
...............\....\..............\........\gsm_foe.m
...............\....\..............\........\log_grad_theta.m
...............\....\..............\........\private
...............\....\..............\........\.......\estimator_helper.m
...............\....\..............\........\sample_x.m
...............\....\..............\........\sample_z.m
...............\....\..............\........\test
...............\....\..............\........\....\test_density.m
...............\....\..............\........\....\test_filter.m
...............\....\..............\........\....\test_learning.m
...............\....\..............\........\....\test_sampling.m
...............\....\..............\........\z_distribution.m
...............\....\..............\@gsm_pairwise_mrf
...............\....\..............\.................\cd.m
...............\....\..............\.................\fit_precision.m
...............\....\..............\.................\gsm_pairwise_mrf.m
...............\....\..............\.................\log_grad_log_weights.m
...............\....\..............\.................\private
...............\....\..............\.................\.......\estimator_helper.m
...............\....\..............\.................\test
...............\....\..............\.................\....\test_density.m
...............\....\..............\.................\....\test_learning.m
...............\....\..............\.................\....\test_statistics.m
...............\....\..............\@pairwise_mrf
...............\....\..............\.............\pairwise_mrf.m
...............\....\..............\density.m
...............\....\..............\distribution.m
...............\....\+image_proc
...............\....\...........\convmtxn.m
...............\....\...........\imfiltermtx.m
...............\....\...........\make_convn_mat.m
...............\....\...........\make_imfilter_mat.m
...............\....\...........\psnr.m
...............\....\...........\ssim_index.m
...............\....\+numerical
...............\....\....

CodeBus www.codebus.net