Description: Markov distance is an effective method to compute the similarity between the two samples (data covariance distance), compared with the Euclidean distance, which takes into account the link between different characteristics. This experiment aimed at through the given sample data, design a minimum Mahalanobis distance classifier and classify the test points, and then compare it with the minimum Euclidean distance classifier. Experimental results showed that when the covariance matrix is a unit matrix, minimum Mahalanobis distance classifier with the minimum Euclidean distance classifier equivalent.
To Search:
File list (Check if you may need any files):
Mahalanobis.m