Description: Size and complexity of data repositories collaboratively created
by Web users generate a need for new processing approaches.
In this paper, we study the problem of detection of
fine-grained communities of users in social networks, which
can be defined as clustering with a large number of clusters
To Search:
File list (Check if you may need any files):
Filename | Size | Date |
---|
main2.m | 1086 | 2017-10-18
|
sqdist.m | 152 | 2017-07-01
|
stdv.m | 156 | 2014-02-12
|
stream.m | 560 | 2017-07-01
|
Untitled2.m | 1609 | 2016-11-29
|
Untitled5.m | 4035 | 2017-02-04
|
usps38.mat | 171193 | 2014-02-12
|
apriori.m | 695 | 2017-07-01
|
eff.m | 583 | 2017-07-01
|
FpGrowth.m | 729 | 2017-07-01
|
INys.m | 664 | 2017-07-01
|
main.m | 15423 | 2017-07-20
|
G.txt | 32900 | 2017-12-11
|
Iter.txt | 2 | 2017-12-11
|
K.txt | 2 | 2017-12-11
|
test.txt | 18 | 2017-12-11
|
VV1.txt | 0 | 2017-12-11
|
000b.mat | 54059 | 2014-02-15
|
000c.mat | 13363 | 2014-02-17
|
000d.mat | 17307 | 2014-02-17
|
CDTB01.mat | 9222 | 2014-03-11
|
CDTBDemo01.m | 273 | 2013-12-09
|
CDTBDemo02.m | 549 | 2014-02-17
|
CheckAll01.m | 2947 | 2014-02-16
|
CheckAll02.m | 2947 | 2014-02-16
|
CheckAll03.m | 2969 | 2014-02-16
|
ClustExp.m | 1486 | 2017-12-11 |