Welcome![Sign In][Sign Up]
Location:
Search - 多相分解

Search list

[Special EffectsFusionCode1

Description: 针对多聚焦图像融合,本文首先介绍了小波变换融合算法,虽然小波变换方法无冗余,高频分量损失较小,具有较好的融合效果,但存在两个主要缺点:一是移变性,二是融合图像在重构时会受到一些外来因素的影响,所以仍会丢失一些边缘信息,为了克服小波变换法的以上缺点,可以采用基于小波分解和点扩展函数模型PSF相结合的融合方法。该方法首先对不同的图像进行无降2采样的小波分解,以保持与源图像大小相同,然后分别将其各方向、各尺度的高频分量进行叠加,并依此提取其高频分量的特征信息来判定清晰目标或模糊目标,以此来设计融合算法,采用一定的策略将两副源图像进行融合,从而避开了小波的反变换,因此融合后的图像具有比小波变换法更好的融合效果。-multi-focus image fusion, this paper introduces the wavelet transform algorithm, Although the wavelet transform non-redundant, the loss of high-frequency components are smaller, better integration effect, But there are two major drawbacks : First, the shift variability and the second is the integration of image reconstruction will be subject to a number of external factors. Therefore, there would still be some marginal loss of information, in order to overcome the wavelet transform of the above shortcomings, can be used based on wavelet decomposition and the point spread function PSF model combining the fusion method. The first pair of different images ratchet two sampling wavelet decomposition, and to maintain the same source image size. Then all of its direction, the scale of high-freque
Platform: | Size: 1549 | Author: 廖鑫鹏 | Hits:

[Special Effects3

Description: <基于相位相关的小波域图像配准方法研究> 小波变换是一种多尺度信号分析方法,近几年在图像处理领域受到广泛关注,它克服了傅立叶变换的固定分辨率 的弱点,既可分析信号概貌,又可分析信号的细节。相位相关是一种频率域的图像配准参数估计方法,是利用傅立叶变换的 平移、旋转等特性进行参数估计的。在研究多尺度小波分析和相位相关理论的基础上,提出基于小波系数的像素级相位相 关图像配准方法:首先对待配准图像进行小波分解,获得低频小波系数后,再对小波系数应用相位相关进行配准参数估计。 实验结果表明了该方法的可行性和有效性。
Platform: | Size: 139952 | Author: feng | Hits:

[Special EffectsFusionCode1

Description: 针对多聚焦图像融合,本文首先介绍了小波变换融合算法,虽然小波变换方法无冗余,高频分量损失较小,具有较好的融合效果,但存在两个主要缺点:一是移变性,二是融合图像在重构时会受到一些外来因素的影响,所以仍会丢失一些边缘信息,为了克服小波变换法的以上缺点,可以采用基于小波分解和点扩展函数模型PSF相结合的融合方法。该方法首先对不同的图像进行无降2采样的小波分解,以保持与源图像大小相同,然后分别将其各方向、各尺度的高频分量进行叠加,并依此提取其高频分量的特征信息来判定清晰目标或模糊目标,以此来设计融合算法,采用一定的策略将两副源图像进行融合,从而避开了小波的反变换,因此融合后的图像具有比小波变换法更好的融合效果。-multi-focus image fusion, this paper introduces the wavelet transform algorithm, Although the wavelet transform non-redundant, the loss of high-frequency components are smaller, better integration effect, But there are two major drawbacks : First, the shift variability and the second is the integration of image reconstruction will be subject to a number of external factors. Therefore, there would still be some marginal loss of information, in order to overcome the wavelet transform of the above shortcomings, can be used based on wavelet decomposition and the point spread function PSF model combining the fusion method. The first pair of different images ratchet two sampling wavelet decomposition, and to maintain the same source image size. Then all of its direction, the scale of high-freque
Platform: | Size: 1024 | Author: 廖鑫鹏 | Hits:

[Special Effects3

Description: <基于相位相关的小波域图像配准方法研究> 小波变换是一种多尺度信号分析方法,近几年在图像处理领域受到广泛关注,它克服了傅立叶变换的固定分辨率 的弱点,既可分析信号概貌,又可分析信号的细节。相位相关是一种频率域的图像配准参数估计方法,是利用傅立叶变换的 平移、旋转等特性进行参数估计的。在研究多尺度小波分析和相位相关理论的基础上,提出基于小波系数的像素级相位相 关图像配准方法:首先对待配准图像进行小波分解,获得低频小波系数后,再对小波系数应用相位相关进行配准参数估计。 实验结果表明了该方法的可行性和有效性。-err
Platform: | Size: 139264 | Author: feng | Hits:

[Special Effects000_Nonlinear_Multiscale_Wavelet_Diffusion_in_Ultr

Description: 小波变换与非线性扩散相结合的文章,将图像进行小波多尺度分解,再应用非线性扩散方法处理,适用于斑点去噪。-_Nonlinear_Multiscale_Wavelet_Diffusion_for_Speckle_Suppression_and_Edge_Enhancement_in_Ultrasound_Images
Platform: | Size: 2728960 | Author: 郭文 | Hits:

[Special EffectswaveletImageFusion

Description: 针对多聚焦图像融合,采用基于小波分解和点扩展函数模型PSF相结合的融合方法。-For multi-focus image fusion, based on wavelet decomposition and the point spread function PSF model combining fusion.
Platform: | Size: 2048 | Author: whylychao | Hits:

[Program docmultidimensional-scaling

Description: 本文提出一种基于多维定标的无线传感器网络三维定位算法,结合RSS经验衰减模型和最短路径建立相异性矩阵,采用轻量级矩阵分解算法降低相异性矩阵分解的计算复杂性,并利用网络中存在的周期性消息将初始定位信息回送,在后台使用迭代优化算法对初始定位结果求精。仿真实验表明,在测距误差一定的情况下,该算法能够提高节点三维坐标的初始计算精度,经过集中式的优化求精后与MDS-MAP算法相比,能够明显地提高节点三维定位的精度-This paper presents a method based on multidimensional scaling in wireless sensor network positioning algorithm, combined with RSS experience attenuation model and the shortest path to establish dissimilarity matrix, using lightweight matrix factorization algorithm reduces computational complexity dissimilarity matrix decomposition, and the use of the network in the presence of periodic messages will be the initial positioning information return, in the background using an iterative optimization the algorithm to the initial positioning results refinement. Simulation results show that, in some cases ranging error, this algorithm can improve the calculation accuracy of three-dimensional coordinates of the initial node, through the centralized optimization refinement after compared with MDS-MAP algorithm, which can obviously improve the precision of 3D Node Localization
Platform: | Size: 185344 | Author: 于文娟 | Hits:

[matlabnmf(m)

Description: NMF即为非负矩阵分解,是在矩阵中所有元素均为非负数约束条件之下的矩阵分解方法。NMF分解算法相较于传统的一些算法而言,具有实现上的简便性、分解形式和分解结果上的可解释性,以及占用存储空间少等诸多优点。-Some of these methods have their roots in neural computation, but have since been shown to be widely applicable for signal analysis.
Platform: | Size: 1024 | Author: cc | Hits:

[Waveletwatermarkcleck-door

Description: 小波变换域图像水印算法是一种对图像多尺度的空间频率分解[13],能更好地与人类视觉系统(HVS Human Visual System)相匹配。由于小波变换具有良好的时频局部性和多分辨率表示的特点,而且,当前最新的图像压缩标准——JPEG2000 和视频的MPEG-7 压缩标准都采用了小波变换,-The wavelet transform domain image watermarking algorithm is a multi-scale image of the spatial frequency decomposition [13], to better match the human visual system (HVS Human Visual System). Because the wavelet transform has good frequency characteristics of the locality and multiresolution representation, and, the latest image compression standard- JPEG2000 and video MPEG-7 compression standards have adopted the wavelet transform,
Platform: | Size: 1992704 | Author: QYH | Hits:

[Software EngineeringWignerVille2014

Description: 本文将小波图像分解和信息熵特征提取相结合,提出一种新的掌纹特征提取算法。该算法首先对掌纹灰度图像进行二维小波分解,再利用多分辨信息熵分别计算不同尺度下的能谱熵作为特征向量,从而实现掌纹特征提取。该算法不但避免了图像增强和纹理细化等预处理过程,而且运用多分辨信息熵的自适应计算方法来调节分解级数,使得到的特征向量长度远小于传统算法。-In this paper, wavelet image decomposition and information entropy feature extraction combined propose a new feature extraction algorithm. The algorithm first palmprint grayscale image two-dimensional wavelet decomposition, reuse multiresolution information entropy were calculated at different scales of the energy spectrum entropy as feature vectors, enabling feature extraction. The algorithm not only avoids the preprocessing such as image enhancement and texture refinement process, and the use of multi-resolution information entropy adaptive calculation method to regulate the decomposition level, so that the length of the feature vector obtained is far smaller than the conventional algorithm.
Platform: | Size: 8443904 | Author: wei | Hits:

[Software EngineeringMarx20110509

Description: 本文将小波图像分解和信息熵特征提取相结合,提出一种新的掌纹特征提取算法。该算法首先对掌纹灰度图像进行二维小波分解,再利用多分辨信息熵分别计算不同尺度下的能谱熵作为特征向量,从而实现掌纹特征提取。该算法不但避免了图像增强和纹理细化等预处理过程,而且运用多分辨信息熵的自适应计算方法来调节分解级数,使得到的特征向量长度远小于传统算法。-In this paper, wavelet image decomposition and information entropy feature extraction combined propose a new feature extraction algorithm. The algorithm first palmprint grayscale image two-dimensional wavelet decomposition, reuse multiresolution information entropy were calculated at different scales of the energy spectrum entropy as feature vectors, enabling feature extraction. The algorithm not only avoids the preprocessing such as image enhancement and texture refinement process, and the use of multi-resolution information entropy adaptive calculation method to regulate the decomposition level, so that the length of the feature vector obtained is far smaller than the conventional algorithm.
Platform: | Size: 1056768 | Author: wei | Hits:

[matlab演示用多相分解法实现增采样

Description: 演示用多相分解法实现增采样,说明使用窗函数对冲激响应序列进行截取的必要性。
Platform: | Size: 1327 | Author: 88610748@qq.com | Hits:

[VHDL-FPGA-Verilogduoxiangchouqu

Description: 该程序采用多相分解方式实现的抽取器滤波器,该抽取器的运行速度要比向下采样器的通常FIR滤波器的速度快R倍。-The program uses polyphase decomposition way to achieve the decimation filter, the speed of the extractor runs faster than the down sampler of the FIR filter is generally faster R times.
Platform: | Size: 1024 | Author: yang | Hits:

[Audio programFilterDesign01

Description: 变采样和多相滤波器的实现。本程序实现了一个变采样程序,中间设计滤波器设计和插值抽取。其中滤波器设计用的是窗函数法,根据要求设计窗函数,得到窗函数的长度。接着是插值,滤波,抽取,得到最后变采样之后的波形文件、另外对比了用直接卷积和多相分解卷积两种方法最后的结果。 -Implementation of variable sampling and polyphase filter. This procedure implements a variable sampling procedures, intermediate design and interpolation and decimation filter design. The filter design is using the window function method, according to the requirements of the design of window function, get the length of the window function. Then the interpolation, filtering, extraction, and finally obtain the variable wave file, sampling after the addition of contrast and polyphase decomposition results of two methods for convolution last direct convolution.
Platform: | Size: 261120 | Author: 袁斌 | Hits:

[matlabkuipiu_v19

Description: 现代信号处理中谱估计在matlab中的使用,基于多相结构的信道化接收机,Pisarenko谐波分解算法。- Modern signal processing used in the spectral estimation in matlab, Channelized receiver based on multi-phase structure, Pisarenko harmonic decomposition algorithm.
Platform: | Size: 6144 | Author: 赵小才 | Hits:

[Software Engineeringjaolingpou

Description: Pisarenko谐波分解算法,包含特征值与特征向量的提取、训练样本以及最后的识别,基于多相结构的信道化接收机。- Pisarenko harmonic decomposition algorithm, Contains the eigenvalue and eigenvector extraction, the training sample, and the final recognition, Channelized receiver based on multi-phase structure.
Platform: | Size: 10240 | Author: 李宁堂 | Hits:

[source in ebookSparse image and signal processing

Description: 这本书在稀疏的多尺度图像和信号处理提出了艺术状态,包括线性多尺度变换,如小波,脊波和曲波变换、非线性、多尺度变换基于中值和数学形态学算子。最近的稀疏性和形态多样性的概念描述和利用各种问题,如去噪,反问题正规化,稀疏信号分解,盲源分离,压缩感知。 这本书的理论和实践研究相结合的领域,如天文学、生物学、物理学、数字媒体应用和取证。最后一章探讨了信号处理中的一个范式转换,表明以前的信息取样和提取的限制可以用非常重要的方法加以克服。 MATLAB和IDL代码伴随这些方法和应用程序重现。 实验并说明了在相关网站上可下载的研究的推理和方法。(This book presents the state of the art in sparse and multiscale image and signal processing, covering linear multiscale transforms, such as wavelet, ridgelet, or curvelet transforms, and non-linear multiscale transforms based on the median and mathematical morphology operators. Recent concepts of sparsity and morphological diversity are described and exploited for various problems such as denoising, inverse problem regularization, sparse signal decomposition, blind source separation, and compressed sensing. This book weds theory and practice in examining applications in areas such as astronomy, biology, physics, digital media, and forensics. A final chapter explores a paradigm shift in signal processing, showing that previous limits to information sampling and extraction can be overcome in very significant ways.)
Platform: | Size: 30863360 | Author: lxfei73 | Hits:

CodeBus www.codebus.net