Description: 实验题目:Hermite插值多项式
相关知识:通过n+1个节点的次数不超过2n+1的Hermite插值多项式为:
其中,Hermite插值基函数
数据结构:三个一维数组或一个二维数组
算法设计:(略)
编写代码:(略)
实验用例: 已知函数y=f(x)的一张表(其中 ):
x 0.10 0.20 0.30 0.40 0.50
y 0.904837 0.818731 0.740818 0.670320 0.606531
m -0.904837 -0.818731 -0.740818 -0.670320 -0.606531
x 0.60 0.70 0.80 0.90 1.00
y 0.548812 0.496585 0.449329 0.406570 0.367879
m -0.548812 -0.496585 -0.449329 -0.406570 -0.367879
实验用例:利用Hermite插值多项式 求被插值函数f(x)在点x=0.55处的近似值。建议:画出Hermite插值多项式 的曲线。
-Experiment Title: Hermite interpolation polynomial-related knowledge: By n+ 1 nodes does not exceed the number of 2n+ 1 of the Hermite interpolation polynomial as follows: one, Hermite interpolation basis function data structure: three one-dimensional array or a two-dimensional array algorithm design: (slightly) the preparation of the code: (slightly) experimental use case: a known function y = f (x) of a table (of which): x 0.10 0.20 0.30 0.40 0.50y 0.904837 0.818731 0.740818 0.670320 0.606531m-- 0.904837-0.818731-0.740818-0.670320-0.606531x 0.60 0.70 0.80 0.90 1.00y 0.548812 0.496585 0.449329 0.406570 0.367879m-0.548812-0.496585-0.449329-0.406570-0.367879 experimental use case: the use of Hermite interpolation polynomial interpolation function for by f (x ) in the point x = 0.55 Department approximation. Recommendations: Draw Hermite interpolation polynomial curve. Platform: |
Size: 1024 |
Author:张涛 |
Hits:
Description: 算法实验名称: Hermite 插值的C语言程序及应用举例
功能说明: 本实验主要设计了Hermite插值多项式的C程序代码,并举例进行了运算.-Experimental Algorithm name: Hermite interpolation of the C language program and application, for example functional description: In this experiment, the main design of the Hermite interpolation polynomial of C code, and example calculations carried out. Platform: |
Size: 286720 |
Author:白文静 |
Hits:
Description: Source Code Archive
An Introduction to Numerical Analysis
with Applications to the Physical,
Natural and Social Sciences-neville.C
Neville s algorithm
divdiff.C
calculate the coefficients of the Newton form of the interpolating polynomial using divided differences
nf_eval.C
evaluate the Newton form of the interpolating polynomial
cubic_nak.C
construct the cubic spline interpolant with "not-a-knot" boundary conditions
cubic_clamped.C
construct the cubic spline interpolant with clamped boundary conditions
spline_eval.C
evaluate a spline interpolant (works with the output from cubic_nak.C and cubic_clamped.C)
hermite.C
calculate the coefficients of the Hermite interpolating polynomial
cubic_herm.C
evaluate the Hermite cubic interpolant Platform: |
Size: 2048 |
Author:范姜 |
Hits:
Description: The polynomial solutions of the Hermite differential equation, with n a non-negative integer, are
usually normed so that the highest degree term is 2z and called the Hermite polynomials
H z. The Hermite polynomials may be defined explicitly by Platform: |
Size: 176128 |
Author:Sid |
Hits:
Description: 埃尔米特差值多项式 利用Hermite插值多项式 求被插值函数f(x)在点x=0.55处的近似值-Difference between the use of Hermite polynomial Hermite interpolation polynomial interpolation functions demand is f (x) at point x = 0.55 at the approximate Platform: |
Size: 1024 |
Author:王晓菲 |
Hits:
Description: 高斯的Hermite正交规则-generates zeros of a Hermite polynomial of degree n to tolerance "tol" and their associated weights. Platform: |
Size: 4096 |
Author:leron |
Hits:
Description: 实验题目:Hermite插值多项式
相关知识:通过n+1个节点的次数不超过2n+1的Hermite插值多项式为:
其中,Hermite插值基函数
数据结构:三个一维数组或一个二维数组
算法设计:(略)
编写代码:(略)
实验用例: 已知函数y=f(x)的一张表(其中 ):
x 0.10 0.20 0.30 0.40 0.50
y 0.904837 0.818731 0.740818 0.670320 0.606531
m -0.904837 -0.818731 -0.740818 -0.670320 -0.606531
x 0.60 0.70 0.80 0.90 1.00
y 0.548812 0.496585 0.449329 0.406570 0.367879
m -0.548812 -0.496585 -0.449329 -0.406570 -0.367879
实验用例:利用Hermite插值多项式 求被插值函数f(x)在点x=0.55处的近似值。建议:画出Hermite插值多项式 的曲线。-Experiment Title: Hermite interpolation polynomial
Related knowledge: the number of n+1 nodes does not exceed 2n+1 Hermite interpolation polynomial is:
Among them, the Hermite interpolation basis function
Data structures: a three-dimensional array or a two-dimensional array
Algorithm design: (a little)
Write the code: (omitted)
Experimental use cases: a table of known function y = f (x) (where):
x 0.10 0.20 0.30 0.40 0.50
y 0.904837 .818731 .740818 0.670320 0.606531
m-0.904837-0.818731-0.740818-0.670320-0.606531
x 0.60 0.70 0.80 0.90 1.00
y .548812 .496585 .449329 .406570 0.367879
m-0.548812-0.496585-0.449329-0.406570-0.367879
Experimental Example: Hermite Interpolation Polynomial approximation of the interpolation function f (x) at point x = 0.55. Recommendation: draw the Hermite interpolation polynomial curve Platform: |
Size: 1024 |
Author:pang |
Hits:
Description: 求已知数据点的拉格朗日插值多项式
求已知数据点的艾特肯插值多项式
求已知数据点的均差形式的牛顿插值多项式
求已知数据点的前向牛顿差分插值多项式
求已知数据点的后向牛顿差分插值多项式
求已知数据点的高斯插值多项式
求已知数据点的埃尔米特插值多项式
求已知数据点的分段三次埃尔米特插值多项式及其插值点处的值
求已知数据点的二次样条插值多项式及其插值点处的值
求已知数据点的第一类三次样条插值多项式及其插值点处的值
求已知数据点的第二类三次样条插值多项式及其插值点处的值
求已知数据点的第三类三次样条插值多项式及其插值点处的值
求已知数据点的第一类B样条的插值
用倒差商算法求已知数据点的有理分式形式的插值分式
用Neville算法求已知数据点的有理分式形式的插值分式
用倒差商算法求已知数据点的有理分式形式的插值分式
用双线性插值求已知点的插值
用二元三点拉格朗日插值求已知点的插值
用分片双三次埃尔米特插值求插值点的z坐标
-Lagrange interpolation polynomials of the known data pointsAitken interpolation polynomials of the known data pointsFor the known data points difference form of the Newton interpolation polynomialFor the known data points prior to the Newton differential polynomial interpolationFor the known data points to the Newton differential polynomial interpolationGauss interpolation polynomials of the known data pointsHermite interpolation polynomials of the known data pointsSection three Hermite interpolation and interpolation point for the known data pointsFor the known data points two times spline interpolation polynomials and interpolation pointFor the known data points to the first three spline interpolation polynomials and interpolation pointFor the known data points of second kinds of three spline interpolation polynomials and interpolation pointFor the known data points of third kinds of three spline interpolation polynomials and interpolation pointInterpolation of the known data points Platform: |
Size: 10240 |
Author:吕文旭 |
Hits:
Description: AE反距离IDW、克里金Krige插值.txt
I显示方法.c
www.pudn.com.txt
三对角线追赶法.C
三样条插值函数算法,还包括其他的比如hermite等算法,很全.txt
二分法.c
分段线性插值.c
列主元元素消元.C
利用反距离平方加权插值算法建立规则格网在大数据量离散点数据的情况下,.txt
反距离加权插值,貌似不好用IDWUtil.java
埃特肯.c
复合梯形法.c
复合辛普森.c
弦割法.c
操作复数的类Complex.txt
操作矩阵的类 Matrix.txt
改进欧拉法.C
杜氏分解法.C
求解线性方程组的类 LEquations .txt
求解非线性方程组的类 NLEquations .txt
牛顿下山.C
牛顿插值多项式.c
牛顿迭代.c
秦九韶.c
简单迭代.c
系统.c
综合测评.c
计算数值积分的类 Integral .txt
进行插值的类Interpolation.txt
雅克比迭代.C
高斯消去法.c
龙格库塔方法.C
龙贝格算法.c-AE Inverse Distance IDW, kriging Krige interpolation. Txt
I display method. C
www.pudn.com.txt
Three diagonal pursuit method. C
Three spline interpolation algorithm, also includes other such hermite other algorithms, it is full. Txt
Dichotomy. C
Piecewise linear interpolation. C
Main-element element elimination. C
Using the inverse distance squared weighted interpolation algorithm for establishing regular grid of discrete points in the large amount of data in case of data,. Txt
Inverse distance weighted interpolation, seemingly bad IDWUtil.java
Aite Ken. C
Composite trapezoidal method. C
Composite Simpson. C
Chord cutting method. C
Operation plural class Complex.txt
Operation Matrix class Matrix.txt
Improved Euler method. C
Duchenne decomposition. C
Solving linear equations class LEquations. Txt
Solving nonlinear equations class NLEquations. Txt
Newton downhill. C
Newton interpolation polynomial. C
Newton iteration. C
Horner. C
Simple iteration. C
Systems. C
C Platform: |
Size: 60416 |
Author:songguanjun |
Hits:
Description: 详细介绍了matlab插值与拟合方法,包括拉格朗日多项式插值、牛顿插值、分段线性插
值、Hermite 插值和三次样条插值和曲线的最小二乘拟合、多项式拟合方法、最小二乘优化所有程序均有相应的说明与应用实例-Details of the matlab interpolation and fitting methods, including Lagrange polynomial interpolation, Newton interpolation, piecewise linear interpolation
Value, Hermite interpolation and cubic spline interpolation and least-squares curve fitting, polynomial fitting method, least squares optimization program has all the appropriate instructions and application examples Platform: |
Size: 271360 |
Author:唐小米 |
Hits:
Description: Hermite插值多项式拟合Matlab程序。运用Matlab软件依据理论可画出Hermite插值图像,并求出Hermite多项式,并应用到实际问题中。-Hermite interpolation polynomial fitting Matlab program。Using Matlab software can be drawn based on the theory Hermite interpolation image, and find Hermite polynomials, and applied to practical problems. Platform: |
Size: 7168 |
Author:caidb |
Hits:
Description: 基于三次埃尔米特多项式推导出来的三次样条插值matlab程序,用于知道一阶导数边界条件的插值,不仅可以输出插值节点的值,还可以输出每一段的插值多项式,更重要的是还可以输出各插值点的一阶导数值。-This is a matlab code of cubic spline interpolation, which is derived the Hermite of three polynomials. It can be used only when the first derivative of boundaries is known. This code can not only output the value of the interpolation node, it can also output every interpolation polynomial, more importantly, it is also can output the first derivative of each interpolation point. Platform: |
Size: 1024 |
Author:Michal |
Hits:
Description: HERMITE_PRODUCT_DISPLAY is a MATLAB program which displays an image of a function created by the Cartesian product of two Hermite polynomials, such as f(x,y) = h(3,x) * h(1,y).
There are five types of Hermite polynomial available. Perhaps the best behaved are Hen(n,x) and Hf(n,x) , which don t blow up within the plotting interval as fast as the other functions do.-HERMITE_PRODUCT_DISPLAY is a MATLAB program which displays an image of a function created by the Cartesian product of two Hermite polynomials, such as f(x,y) = h(3,x) * h(1,y).
There are five types of Hermite polynomial available. Perhaps the best behaved are Hen(n,x) and Hf(n,x) , which don t blow up within the plotting interval as fast as the other functions do. Platform: |
Size: 3072 |
Author:Yu Deyang |
Hits:
Description: 多项式插值求解 案例 希望有所帮助 , 自带案列 和图(The program should include a function generalInterpolation(fs,xs) that finds the
interpolating polynomial including in cases where there are repeated points (inlcuding Hermite interpolation, where the points are doubled, and Taylor series, where all
nodes are in the same location). It should do this by constructing a divided difference table, then returning the polynomial defined by the table and the interpolating
nodes xs) Platform: |
Size: 496640 |
Author:oubao |
Hits: