Welcome![Sign In][Sign Up]
Location:
Search - PCA for image feature

Search list

[Mathimatics-Numerical algorithmsrtejfgds

Description: 现有的代数特征的抽取方法绝大多数采用一维的方法,即首先将图像转换为一维向量,再用主分量分析(PCA),Fisher线性鉴别分析(LDA),Fisherfaces式核主分量分析(KPCA)等方法抽取特征,然后用适合的分类器分类。针对一维方法维数过高,计算量大,协方差矩阵常常是奇异矩阵等不足,提出了二维的图像特征抽取方法,计算量小,协方差矩阵一般是可逆的,且识别率较高。-existing algebra feature extraction method using a majority of the peacekeepers, First images will be converted into one-dimensional vector, and then principal component analysis (PCA), Fisher Linear Discriminant Analysis (LDA), Fisherfaces audits principal component analysis (KPCA), and other selected characteristics, then use the appropriate classification for classification. Victoria against an excessive dimension method, calculation, covariance matrix is often inadequate singular matrix, a two-dimensional image feature extraction method, a small amount of covariance matrix is usually reversible, and the recognition rate higher.
Platform: | Size: 2513 | Author: 小弟 | Hits:

[Mathimatics-Numerical algorithmsrtejfgds

Description: 现有的代数特征的抽取方法绝大多数采用一维的方法,即首先将图像转换为一维向量,再用主分量分析(PCA),Fisher线性鉴别分析(LDA),Fisherfaces式核主分量分析(KPCA)等方法抽取特征,然后用适合的分类器分类。针对一维方法维数过高,计算量大,协方差矩阵常常是奇异矩阵等不足,提出了二维的图像特征抽取方法,计算量小,协方差矩阵一般是可逆的,且识别率较高。-existing algebra feature extraction method using a majority of the peacekeepers, First images will be converted into one-dimensional vector, and then principal component analysis (PCA), Fisher Linear Discriminant Analysis (LDA), Fisherfaces audits principal component analysis (KPCA), and other selected characteristics, then use the appropriate classification for classification. Victoria against an excessive dimension method, calculation, covariance matrix is often inadequate singular matrix, a two-dimensional image feature extraction method, a small amount of covariance matrix is usually reversible, and the recognition rate higher.
Platform: | Size: 2048 | Author: 小弟 | Hits:

[Special Effectskl

Description: (1)应用9×9的窗口对上述图象进行随机抽样,共抽样200块子图象; (2)将所有子图象按列相接变成一个81维的行向量; (3)对所有200个行向量进行KL变换,求出其对应的协方差矩阵的特征向量和特征值,按降序排列特征值以及所对应的特征向量; (4)选择前40个最大特征值所对应的特征向量作为主元,将原图象块向这40个特征向量上投影,所获得的投影系数就是这个子块的特征向量。 (5)求出所有子块的特征向量。 -(1) the application of 9 × 9 window of these images at random, a total sample of 200 sub-image (2) all sub-images according to out-phase into a 81-dimensional row vector (3) all 200 lines for KL transform vector, derived its corresponding covariance matrix of eigenvectors and eigenvalues, in descending order by eigenvalue and the corresponding eigenvector (4) a choice to 40 corresponding to the largest eigenvalue eigenvector as the PCA, the original image block to the 40 feature vectors on the projection, the projection coefficients obtained by this sub-block eigenvector. (5) calculated for all sub-block eigenvector.
Platform: | Size: 64512 | Author: ly | Hits:

[2D Graphic07102119146463

Description: 2dpca,用于图象特征的提取,及人脸检测算法-2dpca, for image feature extraction, and face detection algorithm
Platform: | Size: 10240 | Author: 还一个 | Hits:

[Graph RecognizeSpPCA

Description: 利用Sub-pattern PCA在Yale人脸库上进行人脸识别的matlab源代码,子模式主成分分析首先对原始图像分块,然后对相同位置的子图像分别建立子图像集,在每一个子图像集内使用PCA方法提取特征,建立子空间。对待识别图像,经相同分块后,分别将子图像向对应的子空间投影,提取特征。最后根据最近邻原则进行分类。-Sub-pattern PCA use in the Yale face database for face recognition on the matlab source code, sub-mode principal component analysis first of the original image block, and then the same sub-image, respectively, the location of the establishment of sub-image set, in each sub-image Set the use of PCA to extract the features, the establishment of sub-space. Treatment to identify images, by the same block, the respective sub-image to the corresponding sub-space projection, feature extraction. Finally, according to the principle of nearest neighbor classification.
Platform: | Size: 2048 | Author: 章格 | Hits:

[Special EffectsResearchontheshapefeatureextractionandrecognition.

Description: 主分量分析(PCA ) 是统计学中分析数据的一种有效的方法, 可以将数据从高维数据空间变换到低维特征空间, 因而 可以用于数据的特征提取及压缩等方面。在该文的形状识别系统中, 用PCA 法提取图像的形状特征, 能够较好地满足识别 层的输入要求。在识别层研究了3 种识别方法: 最近邻法则、BP 网络及协同神经网络方法, 均取得了满意的实验效果。-Principal component analysis (PCA) is a statistical analysis of data in an effective method to data from high dimensional data space transformation to the low-dimensional feature space, which can be used for data feature extraction and compression and so on. In this paper, the shape recognition system using PCA extraction of the shape of image features, can be used to satisfy the identification requirements of the input layer. In the recognition layer studied three kinds of identification methods: nearest neighbor rule, BP network and the synergetic neural network methods, have achieved a satisfactory experiment results.
Platform: | Size: 277504 | Author: 陈平 | Hits:

[Graph programpcaandica

Description: 这是一个人脸识别的程序,先对图像预处理,然后用PCA进行特征提取。-This is a face recognition process, first on the image pre-processing, and then use PCA for feature extraction.
Platform: | Size: 2676736 | Author: ll | Hits:

[Special EffectsPCA

Description: 用主成分分析法提取人脸图像特征的程序,算法理论依据是K-L变换-Principal Component Analysis with face image feature extraction process
Platform: | Size: 1024 | Author: 牛险峰 | Hits:

[Graph programPCA_extraction

Description: Image Feature Extraction based on PCA
Platform: | Size: 1024 | Author: 廖志 | Hits:

[AI-NN-PRDCT

Description: 本文设计基于DCT的人脸识别系统,首先结合当今人脸识别的背景和发展状况讨论了人脸识别的研究内容及在各方面的应用;然后研究了人脸识别进行预处理,讨论了人脸识别预处理的其他方法,分析各种方法的利弊,最后采用DCT(离散余弦变换)实现人脸图像预处理中的降维处理;接下来对人脸图像的特征提取进行了研究,简单叙述了几何特征提取和代数特征提取,同时深入研究了基于DCT和PCA变换的人脸图像特征提取,从而实现是否对人脸识别系统识别率有所提高的研究;对于分类器的选择,本文对两种分类器进行了探讨,即最近邻分类器和BP神经网络分类器,同时采用BP神经网络分类器作为本次基于DCT的人脸识别系统设计的分类器,并对BP神经网络进行分类的算法进行设计,BP神经网络具有学习功能,只要采用本系统对训练图片进行训练,就可以记下图像的相关信息,对于测试图片,就可以很准确的识别出该图片是属于哪个的。最后,本文对整个人脸识别系统设计实验进行了实验分析,实验结果表明本文采用的方法切实有效。- This is the design of the DCT-based face recognition systems. First of all, the background light of the current face recognition and face recognition to discuss the development of research in all aspects of content and applications And then studied the pretreatment of face recognition to discuss the pre-treatment of other face recognition methods,and analysis of the pros and cons of various methods, finally, the use of DCT (discrete cosine transform) image pre-processing to achieve in the face of the reduced-order processing Next on the face image feature extraction have been studied, A brief description of the feature extraction and algebraic geometry feature extraction, while in-depth study based on the DCT and the PCA Transform face image feature extraction in order to achieve face recognition system to identify whether the rate of increase in the research For the choice of classifier, this paper carried out on two of classifier, that is, nearest neighbor classifier and BP neura
Platform: | Size: 422912 | Author: 刘文珍 | Hits:

[2D GraphicPCA_SVM

Description: 此方法采用经典的PCA对人脸图像进行特征提取,用libsvm库函数的SVM分类器对图像分类。-This method uses the classical PCA on the face image feature extraction, with the libsvm library function of SVM classifier for image classification.
Platform: | Size: 6144 | Author: zhangpei | Hits:

[Graph programFacedetect

Description:  计算机人脸识别技术( Face Reocgnition)就利用计算机分析人脸图像,从中提取出有效的识别信息,用来辨认身份的一门技术。[ 1 ]即对已知人脸进行标准化处理后,通过某种方法和数据库中的人脸样本进行匹配,寻找库中对应人脸及该人脸相关信息。人脸自动识别系统有两个主要技术环节,一是人脸定位,即从输入图像中找到人脸存在的位置,将人脸从背景中分割出来,二是对标准化后的人脸图像进行特征提取和识别。本文中介绍的PCA (特征脸)方法就是一种常用的人脸 特征提取方法。-Computer Face Recognition Technology (Face Reocgnition) on the use of computer analysis of facial image, to extract the valid identification information used to identify the status of a technology. [1] that is known to standardize treatment of face, through a method and a database of face samples for matching, search library, the corresponding face and the face-related information. Automatic face recognition system has two main technical aspects, first, face location, that is, from the input image to find the location of the face there, the faces will be split out from the background, the second is, the standard features of face images extraction and recognition. Described in this paper PCA (Eigenfaces) method is a common facial feature extraction method.
Platform: | Size: 224256 | Author: Highjoe | Hits:

[Graph RecognizefsvmPpca-face-Recognition

Description: 首先用PCA对ORA人脸图像降维,然后用模糊支持向量机对提取的特征向量进行分类,识别率较高。-First using PCA for dimensionality reduction ORA face image, and then use fuzzy support vector machine to classify the extracted feature vectors, the recognition rate is higher.
Platform: | Size: 891904 | Author: 杨力 | Hits:

[Special Effectspca-and-wavelet-for-feature

Description: 结合PCA和Wavelet进行图像压缩和特征提取等方面的研究-fuse wavelet and PCA for image compression,denoise and feature extraction
Platform: | Size: 296960 | Author: yuanxuegeng | Hits:

[Special Effectspca

Description: pca算法已经广泛应用于各方面,当提取的图像特征维度比较高时,为了简化计算量以及储存空间,需要对这些高维数据进行一定程度上的降维,并尽量保证数据的不失真。-pca algorithm has been widely used in various areas, when the extracted image feature dimension is relatively high, in order to simplify the calculation and storage space needed for these high-dimensional data for a certain degree of reduced dimensions, and try to ensure data is not distorted.
Platform: | Size: 6144 | Author: 移风 | Hits:

[matlabPCA-renlianshibie

Description: 采用PCA提取人脸特征,先计算M个图像的平均值脸,再求出各特征值脸。-Using PCA for face feature extraction, first calculate the average face image of M, and then find the face value of each characteristic.
Platform: | Size: 289792 | Author: wangdanni | Hits:

[matlabpca

Description: 目前,pca算法已经广泛应用于各方面,就拿图像处理,经常做的一件事就是当提取的图像特征维度比较高时,为了简化计算量以及储存空间,需要对这些高维数据进行一定程度上的降维,并尽量保证数据的不失真。-Currently, pca algorithm has been widely used in various aspects, Take image processing, often do one thing when the dimensions of the image feature extraction is relatively high, in order to simplify the calculation and storage space, the need for these high-dimensional data to a certain extent dimensionality reduction on, and try to ensure that data is not distorted.
Platform: | Size: 2048 | Author: chengbo | Hits:

[CSharpPCA

Description: This aplication for image feature extraction
Platform: | Size: 2331648 | Author: himawan | Hits:

[Special EffectsPCA

Description: 非常经典的特征提取算法,经常用来做降维方法,但是也可以直接用来做特征提取,很适合图像处理入门,在人脸识别也经常用到(Very classic feature extraction algorithm, often used to do dimensionality reduction methods, but can also be used directly to do feature extraction, it is suitable for image processing, in face recognition is often used)
Platform: | Size: 6807552 | Author: firefly1 | Hits:

[Special EffectsC++PCASift

Description: 主成分分析,提取图像中的SIFT特征点,用于图像识别和分类(Principal component analysis (PCA), extracting SIFT feature points in images for image recognition and classification)
Platform: | Size: 757760 | Author: wangheng144 | Hits:
« 12 3 »

CodeBus www.codebus.net