CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - Sierpinski Curve
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Search - Sierpinski Curve - List
[
JSP/Java
]
Hilbert_Sierpinski
DL : 0
著名的Hilber 曲线和Sierpinski曲线,JAVA实现.体现递归算法和JAVA中的绘图功能.-famous Hilber curve and Sierpinski curves, JAVA. recursive algorithm embodied in Java and graphics functions.
Date
: 2008-10-13
Size
: 3.4kb
User
:
cx
[
JSP/Java
]
Hilbert_Sierpinski
DL : 0
著名的Hilber 曲线和Sierpinski曲线,JAVA实现.体现递归算法和JAVA中的绘图功能.-famous Hilber curve and Sierpinski curves, JAVA. recursive algorithm embodied in Java and graphics functions.
Date
: 2025-07-09
Size
: 3kb
User
:
cx
[
Fractal program
]
Fractal(1)
DL : 0
文档fractal(1)~fractal(5)是本人花费心血编写的分形几何中一些经典图形的详细Matlab画法(包括Koch曲线、Levy 曲线、分形树、Sierpinski三角形,并附有详细的注解),全部程序都经过认真调试,运行良好。-Document fractal (1) ~ fractal (5) is to spend my efforts to prepare the fractal geometry of some of the classic details of Matlab graphics painting (including the Koch curve, Levy curve, fractal tree, Sierpinski triangle, together with detailed comments) All procedures are carefully debugging, running good.
Date
: 2025-07-09
Size
: 25kb
User
:
刘小
[
Fractal program
]
fractal(2)
DL : 0
文档fractal(1)~fractal(5)是本人花费心血编写的分形几何中一些经典图形的详细Matlab画法(包括Koch曲线、Levy 曲线、分形树、Sierpinski三角形,并附有详细的注解),全部程序都经过认真调试,运行良好。-Document fractal (1) ~ fractal (5) is to spend my efforts to prepare the fractal geometry of some of the classic details of Matlab graphics painting (including the Koch curve, Levy curve, fractal tree, Sierpinski triangle, together with detailed comments) All procedures are carefully debugging, running good.
Date
: 2025-07-09
Size
: 26kb
User
:
刘小
[
Fractal program
]
fractal(3)
DL : 0
文档fractal(1)~fractal(5)是本人花费心血编写的分形几何中一些经典图形的详细Matlab画法(包括Koch曲线、Levy 曲线、分形树、Sierpinski三角形,并附有详细的注解),全部程序都经过认真调试,运行良好。-Document fractal (1) ~ fractal (5) is to spend my efforts to prepare the fractal geometry of some classic graphical Matlab detailed painting (including the Koch curve, Levy curve, fractal tree, Sierpinski triangle, together with detailed comments) All procedures are carefully debugging, running good.
Date
: 2025-07-09
Size
: 17kb
User
:
刘小
[
Fractal program
]
fractal(4)
DL : 0
文档fractal(1)~fractal(5)是本人花费心血编写的分形几何中一些经典图形的详细Matlab画法(包括Koch曲线、Levy 曲线、分形树、Sierpinski三角形,并附有详细的注解),全部程序都经过认真调试,运行良好。-Document fractal (1) ~ fractal (5) is to spend my efforts to prepare the fractal geometry of some of the classic details of Matlab graphics painting (including the Koch curve, Levy curve, fractal tree, Sierpinski triangle, together with detailed comments) All procedures are carefully debugging, running good.
Date
: 2025-07-09
Size
: 40kb
User
:
刘小
[
Fractal program
]
fractal(5)
DL : 0
文档fractal(1)~fractal(5)是本人花费心血编写的分形几何中一些经典图形的详细Matlab画法(包括Koch曲线、Levy 曲线、分形树、Sierpinski三角形,并附有详细的注解),全部程序都经过认真调试,运行良好。-Document fractal (1) ~ fractal (5) is to spend my efforts to prepare the fractal geometry of some classic graphical Matlab detailed painting (including the Koch curve, Levy curve, fractal tree, Sierpinski triangle, together with detailed comments) All procedures are carefully debugging, running good.
Date
: 2025-07-09
Size
: 11kb
User
:
刘小
[
Fractal program
]
iphoneSierpinski
DL : 0
iphone上的Sierpinski分形, 用来学习IPHONE OBJECTIVE C编程, 如UIImageViews-The Sierpinski triangle, also called the Sierpinski gasket or the Sierpinski Sieve, is a fractal named after Sierpinski who described it in 1915. Originally constructed as a curve, this is one of the basic examples of self-similar sets, i.e. it is a mathematically generated pattern that can be reproducible at any magnification or reduction. Features: * Learn how to use UIImageViews * Learn how to use Quartz graphics * Learn how to create a famous fractal * Learn more about "Utility Applications" for iPhone with XCode. * Take the first steps to becoming an iPhone developer today.
Date
: 2025-07-09
Size
: 310kb
User
:
richard
[
Fractal program
]
deidai
DL : 0
WXH-斐波那契数列.Koch曲线 动态的Von Koch分形曲线,中点法生成Sierpinski地毯 分形蝴蝶 -WXH-Fibonacci sequence. Koch curve dynamic Von Koch fractal curve, the mid-point method to generate fractal Sierpinski carpet Butterfly
Date
: 2025-07-09
Size
: 255kb
User
:
方培潘
[
Fractal program
]
graphics
DL : 0
分形树、Sierpinski垫片C程序、Mandlbrot集图形、Koch曲线C程序-Tree fractal, Sierpinski gasket C procedures, Mandlbrot graphics set, Koch curve C program
Date
: 2025-07-09
Size
: 3kb
User
:
echo
[
Special Effects
]
06_04_LS_Fractal
DL : 0
介绍各种形体的表示以及数据结构,实现包括Koch曲线和Koch雪花,Sierpinski地毯,L-S分形树的编程实现。-Introduced a variety of physical representation and data structure, to achieve, including Koch and Koch snowflake curve, Sierpinski carpet, LS Fractal Programming tree.
Date
: 2025-07-09
Size
: 3.51mb
User
:
如花
[
Graph program
]
fractal
DL : 0
学习和研究分形理论的相关算法,然后通过编程实现这些算法,从而对分形学友一些基本了解,对于日后的学习会有不小帮助。 实验采用L系统程序设计实现koch雪花曲线;用迭代函数系统程序设计实现Sierpinski曲线的生成。 内附有代码和解释 -Fractal theory study and research related algorithms, and then programming these algorithms, thus some basic understanding of the fractal buddy, for future study would be no small help. Experimental Design and implementation of system programs using L koch snowflake curve with iterated function system design and implementation procedures for the generation Sierpinski curve. Containing the code and explain
Date
: 2025-07-09
Size
: 176kb
User
:
张伟
[
matlab
]
KaSaC
DL : 0
Koch曲线、Sierpinski三角形、Cantor集的MATLAB实现代码 含结果图-Koch curve, Sierpinski triangle, Cantor set of MATLAB implementation code contains the results of Figure
Date
: 2025-07-09
Size
: 12kb
User
:
luxaky
[
File Format
]
fractal-use
DL : 0
分形的练习一 ①Koch曲线 用复数的方法来迭代Koch曲线 clear i 防止i被重新赋值 A=[0 1] 初始A是连接(0,0)与(1,0)的线段 t=exp(i*pi/3) n=2 n是迭代次数 for j=0:n A=A/3 a=ones(1,2*4^j) A=[A (t*A+a/3) (A/t+(1/2+sqrt(3)/6*i)*a) A+2/3*a] end plot(real(A),imag(A)) axis([0 1 -0.1 0.8]) ②Sierpinski三角形 A=[0 1 0.5 0 0 1] 初始化A n=3 迭代次数 for i=1:n A=A/2 b=zeros(1,3^i) c=ones(1,3^i)/2 A=[A A+[c b] A+[c/2 c]] end for i=1:3^n patch(A(1,3*i-2:3*i),A(2,3*i-2:3*i), b ) patch填充函数 end -Fractal Exercise One The ① Koch curve Plural iteration Koch curve clear i to prevent i is reassigned A = [0 1] initial A is a connection (0,0) and (1,0) of the segments t = exp (i* pi/3) n = 2 n is the number of iterations for j = 0: n A = A/3 a = ones (1,2* 4 ^ j) A = [A (t* A+ a/3) (A/t+ (1/2+ sqrt (3)/6* i)* a) A+2/3* a] end plot (real (A), imag (A)) axis ([0 1-0.1 0.8]) ② Sierpinski triangle A = [0 1 0.5 0 0 1] initialized A n = 3 the number of iterations. for i = 1: n A = A/2 b = zeros (1,3 ^ i) c = ones (1,3 ^ i)/2 A = [A A+ [c b] A+ [c/2 c]] end for i = 1:3 ^ n patch (A (1,3* i-2: 3* i), A (2,3* i-2: 3* i), b ) patch filled function end
Date
: 2025-07-09
Size
: 43kb
User
:
郑志森
[
Fractal program
]
fractal-algorithm-_-base
DL : 0
内含Cantor三分集,Koch曲线,Koch雪花源Arboresent,Sierpinski垫片,Hilbert—Peano曲线,Hilbert—Peano曲线等源代码 -Contains Cantor ternary set, Koch curve, the Koch snowflake source Arboresent, the Sierpinski gasket, Hilbert-Peano curve, Hilbert-Peano curve source code
Date
: 2025-07-09
Size
: 581kb
User
:
张望宇
[
Picture Viewer
]
code
DL : 0
1.实验目的:绘制分形图案并分析其特点。 2.实验内容:绘制Koch曲线、Sierpinski三角形和树木花草图形,观察这些图形的局部和原来分形图形的关系。 3.实验思路:利用函数反复调用自己来模拟分形构造时的迭代过程,当迭代指标n为0时运行作图操作,否则继续迭代-1. Purpose: Draw fractal patterns and analyze their characteristics. 2. Experiment: Draw Koch curve, Sierpinski triangle graphic flowers and trees, observe the relationship between the local and original graphics fractal graphics. 3. Experiment idea: using the function calls itself repeatedly to simulate the iterative process when the fractal structure, when the iteration index n is plotted 0:00 run, otherwise continue iterating
Date
: 2025-07-09
Size
: 157kb
User
:
刘闯
[
Picture Viewer
]
code
DL : 0
1.实验目的:绘制分形图案并分析其特点。 2.实验内容:绘制Koch曲线、Sierpinski三角形和树木花草图形,观察这些图形的局部和原来分形图形的关系。 3.实验思路:利用函数反复调用自己来模拟分形构造时的迭代过程,当迭代指标n为0时运行作图操作,否则继续迭代-1. Purpose: Draw fractal patterns and analyze their characteristics. 2. Experiment: Draw Koch curve, Sierpinski triangle graphic flowers and trees, observe the relationship between the local and original graphics fractal graphics. 3. Experiment idea: using the function calls itself repeatedly to simulate the iterative process when the fractal structure, when the iteration index n is plotted 0:00 run, otherwise continue iterating
Date
: 2025-07-09
Size
: 157kb
User
:
刘闯
[
Software Engineering
]
Estimation-of-Fractal-Dimensions
DL : 0
利用MATLAB 的图像处理和数值计算功能,对大气可吸入颗粒物的场发射电镜 (FESEM)图像进行处理,得到颗粒物边界的二值图像;编制MATLAB程序,统计一系列以不同 像素数量为边长的正方形块覆盖二值图像时的个数,根据像素数量和正方形块个数之间的关系, 确定图像的计盒维数。结果表明:MATLAB对分形图像的处理简单、方便,通过科赫曲线、谢宾 斯基填料等有规分形图形分形维数的计算表明该方法计算出的结果准确、可靠。对大气颗粒物的 分形维数的计算表明,不同不规则程度的颗粒物有不同的分形维数,可以通过颗粒物分形维数的 计算分析颗粒物的来源和输运过程.-The functions of MATLAB in image processing and numerical calculation were am— ployed to process the images of atmosphere sniffable particles obtained by the field emission scanning electron microscope (FESEM )。W ith the M ATLAB program,the binary images of the particles border were acquired,the numbers of a series of square blocks whose lengths were different pixel quantities to cover the binary image were counted,and the box-counting di— mensions of these images were calculated according to the mathematics relationship of the pixel quantities and the numbers of square blocks.The results showed that the processing of fractal images by M ATLAB is simple and convenient,and the calculating results of fractal dimensions tested by some fractal curves such as the Koch curve and the Sierpinski gasket are accurate and believable The particles with different irregularities have different fractal dimensions,and the sources and transport processes of particles can be indicated by their
Date
: 2025-07-09
Size
: 217kb
User
:
yinhao
[
OpenCV
]
serpinski_triangle
DL : 0
The Sierpinski triangle (also with the original orthography Sierpiński), also called the Sierpinski gasket or the Sierpinski Sieve, is a fractal and attractive fixed set with the overall shape of an equilateral triangle, subdivided recursively into smaller equilateral triangles. Originally constructed as a curve, this is one of the basic examples of self-similar sets, i.e., it is a mathematically generated pattern that can be reproducible at any magnification or reduction. It is named after the Polish mathematician Wacł aw Sierpiński but appeared as a decorative pattern many centuries prior to the work of Sierpiński.
Date
: 2025-07-09
Size
: 3kb
User
:
Alena
[
Fractal program
]
sierpinski
DL : 1
分形结构的基础,sierpinski曲线。体现了图形形成的迭代,调整结束可以看到图形形成过程(The basis of fractal structure, Sierpinski curve. It reflects the iteration of graphics formation. The process of graphics formation can be seen at the end of adjustment.)
Date
: 2025-07-09
Size
: 2kb
User
:
柒念
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.