Welcome![Sign In][Sign Up]
Location:
Search - arctan

Search list

[Booksarctan.zip

Description:
Platform: | Size: 2034 | Author: | Hits:

[Develop Toolsarctan

Description: arctan.zip
Platform: | Size: 2347 | Author: | Hits:

[Other高级计算器 V1.0

Description: 系统支持的数学函数:PI ! ^ % SQR SQRT INT/TRUNC ROUND ABS FRAC SIN COS TAN ARCSIN ARCCOS ARCTAN LN LOG2 LOG10PI:圆周率。Exp!:计算Exp(表达式)的介乘。Exp1^Exp2:计算Exp1的Exp2次方。Exp1%Exp2:计算Exp1除以Exp2后的余数。Sqr(Exp):计算Exp的平方。Sqrt(Exp):计算Exp的平方根。Int(Exp)/Trunc(Exp):把Exp截断取整。Round(Exp):把Exp四舍五入。Abs(Exp):取Exp的绝对值。Frac(Exp):取Exp的小数部分。Sin(Exp):求Exp的正玄。Cos(Exp):求Exp的余玄。Tan(Exp):求Exp的正切。ArcSin(Exp):求Exp的反正玄。ArcCos(Exp):求Exp的反余玄。ArcTan(Exp):求Exp的反正切。Ln(Exp):求Exp的自然对数。Log2(Exp):求Exp的以2为低的对数。Log10(Exp):求Exp的以10为低的对数。-system to support the Math : PI! ^% SQR SQRT INT / TRUNC ROUND ABS FRAC SIN COS TAN LN ARCSIN ARCCOS ARCTAN LOG2 LOG10PI : pi. Exp. : Computational Exp (expression) of the referral by. Exp1 ^ Exp2 : computational power of Exp1 the Exp2. Exp1% Exp2 : Exp1 calculated by dividing Exp2 the remainder. Monaco (Exp) : Exp calculating the square. Sqrt (Exp) : Exp calculating the square root. Int (Exp) / Trunc (Exp) : With Exp disconnected from the whole. Round (Exp) : With Exp rounding. Abs (Exp) : Exp take the absolute value. Frac (Exp) : Exp take part in the minority. Sin (Exp) : for the Shogen Exp. Cos (Exp) : The Yuxuan seeking Exp. Tan (Exp) : Exp for the tangent. ArcSin (Exp) : Exp seek the arc Yuen. ArcCos (Exp) : for the anti-Yuxuan Exp. ArcTan (Exp) : Exp seek the arc tangent. Ln (Exp) :
Platform: | Size: 182651 | Author: 王波 | Hits:

[SourceCodecordic 实现arctan的matlab验证算法

Description: 用matlab验证cordic实现arctan算法的正确性,共迭代9级,验证过,程序正确
Platform: | Size: 544 | Author: jianchen8@163.com | Hits:

[Booksarctan

Description: arctan.zip
Platform: | Size: 2048 | Author: | Hits:

[Other高级计算器 V1.0

Description: 系统支持的数学函数:PI ! ^ % SQR SQRT INT/TRUNC ROUND ABS FRAC SIN COS TAN ARCSIN ARCCOS ARCTAN LN LOG2 LOG10PI:圆周率。Exp!:计算Exp(表达式)的介乘。Exp1^Exp2:计算Exp1的Exp2次方。Exp1%Exp2:计算Exp1除以Exp2后的余数。Sqr(Exp):计算Exp的平方。Sqrt(Exp):计算Exp的平方根。Int(Exp)/Trunc(Exp):把Exp截断取整。Round(Exp):把Exp四舍五入。Abs(Exp):取Exp的绝对值。Frac(Exp):取Exp的小数部分。Sin(Exp):求Exp的正玄。Cos(Exp):求Exp的余玄。Tan(Exp):求Exp的正切。ArcSin(Exp):求Exp的反正玄。ArcCos(Exp):求Exp的反余玄。ArcTan(Exp):求Exp的反正切。Ln(Exp):求Exp的自然对数。Log2(Exp):求Exp的以2为低的对数。Log10(Exp):求Exp的以10为低的对数。-system to support the Math : PI! ^% SQR SQRT INT/TRUNC ROUND ABS FRAC SIN COS TAN LN ARCSIN ARCCOS ARCTAN LOG2 LOG10PI : pi. Exp. : Computational Exp (expression) of the referral by. Exp1 ^ Exp2 : computational power of Exp1 the Exp2. Exp1% Exp2 : Exp1 calculated by dividing Exp2 the remainder. Monaco (Exp) : Exp calculating the square. Sqrt (Exp) : Exp calculating the square root. Int (Exp)/Trunc (Exp) : With Exp disconnected from the whole. Round (Exp) : With Exp rounding. Abs (Exp) : Exp take the absolute value. Frac (Exp) : Exp take part in the minority. Sin (Exp) : for the Shogen Exp. Cos (Exp) : The Yuxuan seeking Exp. Tan (Exp) : Exp for the tangent. ArcSin (Exp) : Exp seek the arc Yuen. ArcCos (Exp) : for the anti-Yuxuan Exp. ArcTan (Exp) : Exp seek the arc tangent. Ln (Exp) :
Platform: | Size: 182272 | Author: 王波 | Hits:

[Algorithmcordic

Description: cordic methods describe essentially the same algorithm that with suitably chosen inputs can be used to calculate a whole range of scientific functions including sin, cos, tan, arctan, arcsin, arccos, sinh, cosh, tanh, arctanh, log, exp, square root and even multiply and divide. the method dates back to volder [1959], and due to its versatility and compactness, it made possible the microcoding of the hp35 pocket scientific calculator in 1972. here is some code to illustrate the techniques. ive split the methods into three parts linear, circular and hyperbolic. in the hp35 microcode these would be unified into one function (for space reasons). because the linear mode can perform multiply and divide, you only need add/subtract and shift to complete the implementation. you can select in the code whether to do the multiples and divides also by cordic means. other multiplies and divides are all powers of 2 (these dont count). to eliminate these too, would involve ieee hackery.-cordic methods describe essentially the same algorithm that with suitably chosen inputs can be used to calculate a whole range of scientific functions including sin, cos, tan, arctan, arcsin, arccos, sinh, cosh, tanh, arctanh, log, exp, square root and even multiply and divide. the method dates back to volder [1959], and due to its versatility and compactness, it made possible the microcoding of the hp35 pocket scientific calculator in 1972. here is some code to illustrate the techniques. ive split the methods into three parts linear, circular and hyperbolic. in the hp35 microcode these would be unified into one function (for space reasons). because the linear mode can perform multiply and divide, you only need add/subtract and shift to complete the implementation. you can select in the code whether to do the multiples and divides also by cordic means. other multiplies and divides are all powers of 2 (these dont count). to eliminate these too, would involve ieee hackery.
Platform: | Size: 2048 | Author: waqas | Hits:

[VHDL-FPGA-Verilogatan_lut

Description: 基于改进的查找表的arctan计算模块,包含完整的VHDL源代码及部分注释.绝对原创!-Arctan calculation module based on improved searching form. The rar package contains complete VHDL source code and some notes. Absolutely original!
Platform: | Size: 12288 | Author: wgy | Hits:

[Communication-Mobileatan

Description: 反三角函数asin,acos,atan,atan2的实现,编写手机游戏的数学相关库时,经常会用到。 -反三角函数asin, acos, atan, atan2 realization, the preparation of mathematics related to mobile phone games library, is often used.
Platform: | Size: 1024 | Author: lili | Hits:

[VHDL-FPGA-Verilogcordic

Description: we propose a low-cost sequential and high performance architecture for the implementation of CORDIC algorithm in two computation modes. It suited for serial operation that performs conversion between polar and rectangular coordinate systems, essentially sin/cos, sinh/cosh and arctan computation. In our proposed architecture, radix-2 arithmetic is employed. The design targets real time application of fingerprint recognition. We present our VHDL description of CORDIC algorithm. To reduce iteration delay, we used some combinatory blocks. Fixed point arithmetic was considered. To valid our conception and its CORDIC accuracy, we present relative error calculated in convergence range for some trigonometric and hyperbolic functions. Our architecture was implemented and tested. The contribution of the paper includes the CORDIC design flow. -we propose a low-cost sequential and high performance architecture for the implementation of CORDIC algorithm in two computation modes. It suited for serial operation that performs conversion between polar and rectangular coordinate systems, essentially sin/cos, sinh/cosh and arctan computation. In our proposed architecture, radix-2 arithmetic is employed. The design targets real time application of fingerprint recognition. We present our VHDL description of CORDIC algorithm. To reduce iteration delay, we used some combinatory blocks. Fixed point arithmetic was considered. To valid our conception and its CORDIC accuracy, we present relative error calculated in convergence range for some trigonometric and hyperbolic functions. Our architecture was implemented and tested. The contribution of the paper includes the CORDIC design flow.
Platform: | Size: 2048 | Author: Nihel Neji | Hits:

[matlabCalculator

Description: matlab gui. calculator. you can calculate addition, subscraction,division, product, sin, cos, tan ,arcsin, arccos, arctan,log,
Platform: | Size: 7168 | Author: | Hits:

[Othercalculator

Description: 简单计算器,可以实现⑴正弦sin⑵余弦cos⑶正切tan⑷开平方sqrt⑸反正弦arcsin⑹反余弦arccos⑺反正切arctan⑻常用对数lg⑼自然对数ln⑽e指数exp⑾乘幂函数∧-A simple calculator, you can achieve of ⑴ sine sin ⑵ the cosine cos ⑶ tangent tan ⑷ open square sqrt ⑸ anyway chord arcsin ⑹ inverse cosine arccos ⑺ arctangent the the arctan ⑻ common number the lg ⑼ Nature of exp ⑾ exponentiation function ∧ number ln ⑽ e Index
Platform: | Size: 3072 | Author: 吴建豪 | Hits:

[Linux-Unixpoly_atan

Description: Compute the arctan of a FPU_REG, using a polynomial approximation.
Platform: | Size: 2048 | Author: paitengcen | Hits:

[Linux-Unixpoly_atan

Description: Compute the arctan of a FPU_REG, using a polynomial approximation.
Platform: | Size: 2048 | Author: xevogue | Hits:

[matlabfatan_lookup

Description: This the arctan lookup table to create a very simple arctan function
Platform: | Size: 1024 | Author: marc | Hits:

[matlabmain

Description: I,Q通道的 噪声过程是高斯的的,而且是互不相关的,他的功率谱也是白的. 因为I和Q通道的噪声过程是高斯的,而且是互不相关的 我们可以得到他们是相互独立(Papoulis,1984). 最后,由于I和Q通道是独立的零均值高斯过程,因此可以推导出:复信号:I+jQ,幅度是瑞丽分布的,幅度的平放是指数分布的,相位角arctan(Q/I)是在(0,2π]上均匀分布-I Q Gaussian noise
Platform: | Size: 1024 | Author: 刘夏 | Hits:

[Linux-Unixpoly_atan

Description: Compute the arctan of a FPU_REG, using a polynomial approximation.
Platform: | Size: 2048 | Author: riqairv | Hits:

[Graph programcalculator176

Description: 简单计算器,可以实现⑴正弦sin⑵余弦cos⑶正切tan⑷开平方sqrt⑸反正弦arcsin⑹反余弦arccos⑺反正切arctan⑻常用对数lg⑼自然对数ln⑽e指数exp⑾乘幂函数∧-A simple calculator, you can achieve of ⑴ sine sin ⑵ the cosine cos ⑶ tangent tan ⑷ open square sqrt ⑸ anyway chord arcsin ⑹ inverse cosine arccos ⑺ arctangent the the arctan ⑻ common number the lg ⑼ Nature of exp ⑾ exponentiation function ∧ number ln ⑽ e Index
Platform: | Size: 3072 | Author: ya63621 | Hits:

[VHDL-FPGA-Verilogquadratic_func_latest.tar

Description: QUADRATIC_FUNC used to implement arctan
Platform: | Size: 358400 | Author: jack abraham | Hits:

[VHDL-FPGA-Verilogarctan-Function-Approximation

Description: If we implement the arctan(x) using the embedded 9 × 9 bit multipliers we have to take into account that our values are in the range − 1 ≤ x < 1. We therefore use a fractional integer representation in a 1.8 format.
Platform: | Size: 320512 | Author: hooman hematkhah | Hits:
« 12 »

CodeBus www.codebus.net