Welcome![Sign In][Sign Up]
Location:
Search - axis-1.4.j

Search list

[CSharpwar3

Description: 一个复杂的工程通常可以分解成一组小任务的集合,完成这些小任务意味着整个工程的完成。例如,汽车装配工程可分解为以下任务:将底盘放上装配线,装轴,将座位装在底盘上,上漆,装刹车,装门等等。任务之间具有先后关系,例如在装轴之前必须先将底板放上装配线。任务的先后顺序可用有向图表示——称为顶点活动( Activity On Vertex, AOV)网络。有向图的顶点代表任务,有向边(i, j) 表示先后关系:任务j 开始前任务i 必须完成。图1 - 4显示了六个任务的工程,边( 1 , 4)表示任务1在任务4开始前完成,同样边( 4 , 6)表示任务4在任务6开始前完成,边(1 , 4)与(4 , 6)合起来可知任务1在任务6开始前完成,即前后关系是传递的。由此可知,边(1 , 4)是多余的,因为边(1 , 3)和(3 , 4)已暗示了这种关系。-a complex project can usually be divided into a group of small tasks set to complete these tasks means that the completion of the whole project. For example, car assembly projects can be divided into the following tasks : to the chassis via the assembly line, armored axis of the seat is installed in the chassis, painting and installing the brakes, armored doors, etc.. Between tasks has, for example, installed in the shaft bottom before they must first be placed on an assembly line. The task order is available to the map -- known as the vertex (Activity On Vertex, AOV) network. A plan to the apex representative tasks, to the edge (i, j) has said : j task before i task must be completed. Figure 1 - 4 6 shows the mandate of the project, while (1, 4) a mandate in the mission completed before t
Platform: | Size: 911136 | Author: sdg | Hits:

[CSharpwar3

Description: 一个复杂的工程通常可以分解成一组小任务的集合,完成这些小任务意味着整个工程的完成。例如,汽车装配工程可分解为以下任务:将底盘放上装配线,装轴,将座位装在底盘上,上漆,装刹车,装门等等。任务之间具有先后关系,例如在装轴之前必须先将底板放上装配线。任务的先后顺序可用有向图表示——称为顶点活动( Activity On Vertex, AOV)网络。有向图的顶点代表任务,有向边(i, j) 表示先后关系:任务j 开始前任务i 必须完成。图1 - 4显示了六个任务的工程,边( 1 , 4)表示任务1在任务4开始前完成,同样边( 4 , 6)表示任务4在任务6开始前完成,边(1 , 4)与(4 , 6)合起来可知任务1在任务6开始前完成,即前后关系是传递的。由此可知,边(1 , 4)是多余的,因为边(1 , 3)和(3 , 4)已暗示了这种关系。-a complex project can usually be divided into a group of small tasks set to complete these tasks means that the completion of the whole project. For example, car assembly projects can be divided into the following tasks : to the chassis via the assembly line, armored axis of the seat is installed in the chassis, painting and installing the brakes, armored doors, etc.. Between tasks has, for example, installed in the shaft bottom before they must first be placed on an assembly line. The task order is available to the map-- known as the vertex (Activity On Vertex, AOV) network. A plan to the apex representative tasks, to the edge (i, j) has said : j task before i task must be completed. Figure 1- 4 6 shows the mandate of the project, while (1, 4) a mandate in the mission completed before t
Platform: | Size: 911360 | Author: sdg | Hits:

[JSP/Javaopenwfe

Description: java 工作流openwfe免费工作流IE浏览方式-java workflow workflow openwfe free IE browsing
Platform: | Size: 46673920 | Author: scd | Hits:

[matlabcoherencefilter

Description: Example: A = double(imread( fingerprint.png ))/255 B = coherencefilter(A,4, sigma ,1.5, rho ,5) image(min(max(B,0),1)) axis image [1] Weickert, J. 1996. Anisotropic Diffusion in Image Processing. Ph.D. Thesis, Dept. of Mathematics, University of Kaiserslautern, Germany, pp. 42-43, 80-82, 107. Pascal Getreuer 2008-2009 - Example: A = double(imread( fingerprint.png ))/255 B = coherencefilter(A,4, sigma ,1.5, rho ,5) image(min(max(B,0),1)) axis image [1] Weickert, J. 1996. Anisotropic Diffusion in Image Processing. Ph.D. Thesis, Dept. of Mathematics, University of Kaiserslautern, Germany, pp. 42-43, 80-82, 107. Pascal Getreuer 2008-2009
Platform: | Size: 78848 | Author: dkm | Hits:

[SCMcar

Description: 给定一个N*N 的方形网格,设其左上角为起点◎,坐标为(1,1),X轴向右为正,Y轴向下为正,每个方格边长为1。一辆汽车从起点◎出发驶向右下角终点▲,其坐标为(N,N)。在若干个网格交叉点处,设置了油库,可供汽车在行驶途中加油。汽车在行驶过程中应遵守如下规则: (1)汽车只能沿网格边行驶,装满油后能行驶K 条网格边。出发时汽车已装满油,在起点与终点处不设油库。 (2)当汽车行驶经过一条网格边时,若其X 坐标或Y 坐标减小,则应付费用B,否则免付费用。 (3)汽车在行驶过程中遇油库则应加满油并付加油费用A。 (4)在需要时可在网格点处增设油库,并付增设油库费用C(不含加油费用A)。 (5)(1)~(4)中的各数N、K、A、B、C均为正整数。 编程任务: 求汽车从起点出发到达终点的一条所付费用最少的行驶路线。 数据输入: 第一行是N,K,A,B,C的值,2 <=N<=100,2<=K<=10。 第二行起是一个N*N 的0-1方阵,每行N 个值,至N+1行结束。方阵的第i 行第j 列处的值为1 表示在网格交叉点(i,j)处设置了一个油库,为0 时表示未设油库。各行相邻的2 个数以空格分隔。 结果输出: 第1 行中的数是最小费用值。-Given an N* N square grid, set the upper left corner as a starting point ◎, coordinates (1,1), X-axis to the right is positive, Y axis is under, each square of side length 1. A car starting from the starting point towards lower right corner of the end ◎ ▲, the coordinates (N, N). In the number of grid intersection points, set up oil depot, car driving on the way for refueling. Car in motion the process should comply with the following rules: (1) car can only travel along the grid edge, full of oil can travel the grid section K edge. When the car was filled with oil starting in the beginning and the end of office does not set oil tanks. (2) when the vehicle traveling through a grid edge, if the X coordinate or Y coordinate decreases, then meet the cost of B, or to avoid payment. (3) car encountered in the process of moving fuel tank should fill up and pay costs of A. (4) require the grid point when additional fuel tank, and pay the additional cost of tank C (excluding fuel costs
Platform: | Size: 875520 | Author: wakaka | Hits:

[JSP/Javajar

Description: service架包 commons-discovery.jar commons-logging.jar-service jar axis
Platform: | Size: 108544 | Author: 阡陌 | Hits:

[Windows Develop2

Description: 给定一个N*N 的方形网格,设其左上角为起点◎,坐标为(1,1),X轴向右为正,Y轴向下为正,每个方格边长为1。一辆汽车从起点◎出发驶向右下角终点▲,其坐标为(N,N)。在若干个网格交叉点处,设置了油库,可供汽车在行驶途中加油。汽车在行驶过程中应遵守如下规则: (1)汽车只能沿网格边行驶,装满油后能行驶K 条网格边。出发时汽车已装满油,在起点与终点处不设油库。 (2)当汽车行驶经过一条网格边时,若其X 坐标或Y 坐标减小,则应付费用B,否则免付费用。 (3)汽车在行驶过程中遇油库则应加满油并付加油费用A。 (4)在需要时可在网格点处增设油库,并付增设油库费用C(不含加油费用A)。 (5)(1)~(4)中的各数N、K、A、B、C均为正整数。 编程任务: 求汽车从起点出发到达终点的一条所付费用最少的行驶路线。 数据输入: 第一行是N,K,A,B,C的值,2 <=N<=100,2<=K<=10。 第二行起是一个N*N 的0-1方阵,每行N 个值,至N+1行结束。方阵的第i 行第j 列处的值为1 表示在网格交叉点(i,j)处设置了一个油库,为0 时表示未设油库。各行相邻的2 个数以空格分隔。 结果输出: 第1 行中的数是最小费用值。 -Given an N* N square grid, set the upper left corner as a starting point ◎, coordinates (1,1), X-axis to the right is positive, Y axis, is positive, each square side length of 1. Starting a car approached from the lower right corner of the end point ◎ ▲, its coordinates (N, N). In a number of grid intersection points, set the oil tanks, fuel for vehicles in a moving way. Vehicle in motion the process should follow the following rules: (1) car can only travel along the grid edges, filled with oil can travel after the K edge of the grid. Starting when the car has been filled with oil, not in the starting and ending at the depot is located. (2) when the vehicle is traveling through a mesh edge, if the X coordinate or Y coordinate decreases, then the fees payable B, or toll-free use. (3) the process of moving car in case of fuel oil tanks should fill up and pay the cost of A. (4) when needed at additional grid point depot, depot and pay the additional cost of C (excluding fuel costs A)
Platform: | Size: 1024 | Author: 张开 | Hits:

[File Formatfractal-use

Description: 分形的练习一 ①Koch曲线 用复数的方法来迭代Koch曲线 clear i 防止i被重新赋值 A=[0 1] 初始A是连接(0,0)与(1,0)的线段 t=exp(i*pi/3) n=2 n是迭代次数 for j=0:n A=A/3 a=ones(1,2*4^j) A=[A (t*A+a/3) (A/t+(1/2+sqrt(3)/6*i)*a) A+2/3*a] end plot(real(A),imag(A)) axis([0 1 -0.1 0.8]) ②Sierpinski三角形 A=[0 1 0.5 0 0 1] 初始化A n=3 迭代次数 for i=1:n A=A/2 b=zeros(1,3^i) c=ones(1,3^i)/2 A=[A A+[c b] A+[c/2 c]] end for i=1:3^n patch(A(1,3*i-2:3*i),A(2,3*i-2:3*i), b ) patch填充函数 end -Fractal Exercise One The ① Koch curve Plural iteration Koch curve clear i to prevent i is reassigned A = [0 1] initial A is a connection (0,0) and (1,0) of the segments t = exp (i* pi/3) n = 2 n is the number of iterations for j = 0: n A = A/3 a = ones (1,2* 4 ^ j) A = [A (t* A+ a/3) (A/t+ (1/2+ sqrt (3)/6* i)* a) A+2/3* a] end plot (real (A), imag (A)) axis ([0 1-0.1 0.8])   ② Sierpinski triangle A = [0 1 0.5 0 0 1] initialized A n = 3 the number of iterations. for i = 1: n A = A/2 b = zeros (1,3 ^ i) c = ones (1,3 ^ i)/2 A = [A A+ [c b] A+ [c/2 c]] end for i = 1:3 ^ n patch (A (1,3* i-2: 3* i), A (2,3* i-2: 3* i), b ) patch filled function end
Platform: | Size: 44032 | Author: 郑志森 | Hits:

[CSharp01

Description: Description 给定一个r * c的只包含0和1两个数字的矩阵,对于矩阵中任意一点(x,y),定义(x,y)的权为(x,y)到与此点曼哈顿距离最小的1的曼哈顿距离(如果mat[x][y] = 1,则(x,y)的权为0)。请求出对于给定01矩阵中所有点的权值之和。 所谓曼哈顿距离——两点在南北方向上的距离加上在东西方向上的距离,即D(I,J)=|XI-XJ|+|YI-YJ|。对于一个具有正南正北、正东正西方向规则布局的城镇街道,从一点到达另一点的距离正是在南北方向上旅行的距离加上在东西方向上旅行的距离因此曼哈顿距离又称为出租车距离,曼哈顿距离不是距离不变量,当坐标轴变动时,点间的距离就会不同。 Input 输入包含多组数据,每组数据第一行为两个整数r, c(0 < r, c < = 1000)。 接下来 r 行每行有 c 个整数,且保证只能为0或者1(保证矩阵中含有至少一个1)。 Output 对于每组数据,输出一个整数,此矩阵中每个点的权之和。 Sample Input 2 2 0 1 0 0 2 2 0 0 1 1 3 4 0 0 1 0 0 1 1 0 0 0 0 1 Sample Output 4 2 10-Description Given a r* c contains only numbers 0 and 1 matrix , the matrix for any point (x, y), the definition (x, y) has a weight of (x, y) to the minimum Manhattan distance to this point a Manhattan distance (if mat [x] [y] = 1, then (x, y) has a weight of 0 .) The right to request all the points for a given value of 01 and the matrix . The so-called Manhattan distance- the distance between two points in the north-south direction with a distance in the east-west direction , i.e., D (I, J) = | XI-XJ |+ | YI-YJ |. For having a north south , east town street layout rules due west direction , from one point to another point is the distance to the north-south direction of travel distance plus the distance traveled east-west direction and therefore also known as Manhattan distance taxi distance, Manhattan distance is not a distance invariant , when changes in the axis , the distance between points will be different. Input Input contains multiple sets of data , each data of the
Platform: | Size: 1024 | Author: hd | Hits:

CodeBus www.codebus.net