Description: matlab program to fing FFT of given sequence using decimation in time and decimation in frequency algorithms Platform: |
Size: 1024 |
Author:Deepthi |
Hits:
Description: 本程序是自己编写的频域抽取FFT程序,输入自然序,输出倒位序,用C语言实现。-The program is written in their own decimation in frequency domain FFT program, enter the natural order, the output inversion sequence, with the C language. Platform: |
Size: 1024 |
Author:hgdlsl |
Hits:
Description: The VHDL implementation of 8-point FFT in VHDL. Radix 2 Decimation in Frequency-The VHDL implementation of 8-point FFT in VHDL. Radix 2 Decimation in Frequency
It is very good Platform: |
Size: 64512 |
Author:小鸟动人 |
Hits:
Description: The VHDL implementation of 8-point FFT in VHDL. Radix 2 Decimation in Frequency-The VHDL implementation of 64-point FFT in VHDL. Radix 2 Decimation in Frequency
i am found of it.It s really very good! Platform: |
Size: 31744 |
Author:小鸟动人 |
Hits:
Description: 执行分裂基(split-radix)频率抽取(DIF)FFT算法,希望为同仁提供便利。-Implementation of split-based (split-radix) decimation in frequency (DIF) FFT algorithm in the hope that my colleagues facilitated. Platform: |
Size: 1024 |
Author:yuanman |
Hits:
Description: Implementing the Radix-4 Decimation
in Frequency (DIF) Fast Fourier
Transform (FFT) Algorithm Using a
TMS320C80 DSP Platform: |
Size: 150528 |
Author:seojinwon |
Hits:
Description: An Elementary Introduction to the Discrete Fourier Transform
1.1 ComplexNumbers
1.3 Analyzing the Series
1.5 Filtering a Signal
1.6 How Often Does One Sample?
1.7 Notes and References
1.2 Trigonometric Interpolation
1.4 Fourier Frequency Versus Time Frequency
2 Some Mathematical and Computational Preliminaries
2.1 Computing the Twiddle Factors
2.2.1 Real floating-point operation (FLOP) count
2.2.2 Special considerations in computing the FFT
2.3 Expressing Complex Multiply-Adds in Terms of Real Multiply-Adds
2.4 Solving Recurrences to Determine an Unknown Function
2.2 Multiplying Two Complex Numbers
II Sequential FFT Algorithms
3 The Divide-and-Conquer Paradigm and Two Basic FFT Algorithms
3.1 Radix-2 Decimation-In-Time (DIT) FFT
3.1.1 Analyzing the arithmetic cost
3.2 Radix-2 Decimation-In-Frequency (DIF) FFT
3.2.1 Analyzing the arithmetic cost
3.3 Notes and References Platform: |
Size: 14788608 |
Author:Rakesh |
Hits:
Description: RTL Verilog code to perform Two Dimensional Fast Hartley Transform (2D-FHT) for 8x8 points.
Presented algorithm is FHT with decimation in frequency domain. Platform: |
Size: 12288 |
Author:gollasantu |
Hits:
Description: 该程序实现序列的快速傅里叶变换,并且它是属于基-2 FFT中的按频率抽选的FFT运算程序-The Fast Fourier Transform program sequence, and it belongs to the group-2 FFT decimation in frequency FFT operation program Platform: |
Size: 2048 |
Author:jun dong |
Hits:
Description: 实现功能:基8实现64点FFT处理器(进行两次8点FFT计算,采用基8进行64点)
详细说明:硬件结构包括六部分,分别为输入模块、8点FFT模块、乘法模块、顺序调整模块、输出模块和总控制模块。
其中,输入模块的主要功能是将串行输入的64个数据进行分类,分成8批次,每次8个输入到8点FFT模块中进行计算。
8点FFT模块:FFT是DFT的快速算法,当点数较大时,可以较大的减少DFT的运算量。常用的FFT算法主要有两种,分别为按时间抽选的FFT算法(DIT-FFT)和按频率抽选的FFT算法(DIF-FFT)。在我们的设计中,我们采用的是按频率抽选的8点FFT算法。
乘法模块:由于旋转因子的对称性,只需要产生8个常数因子即可。但这样会复用一些单元,从而影响运算速度,为了提高计算速度,我们分析时序情况,增加了一些单元,以实现输入数据到达之后就可以进行运算。
顺序调整模块是将第一级FFT出来的数据顺序进行调整并输出到下一级FFT模块中进行计算,数据的顺序调整情况类似于输入模块,每隔8个数取一个输出。
输出模块:由于第二级FFT模块输出数据顺序不符合实际要求,因此需要调整数据的顺序,从而使64个输出数据安装顺序串行输出,结构类似于输入模块,区别只是输入变为8个数据并行,输出为一个数据串行。-Function: base 8 implement 64-point FFT processor (twice 8:00 FFT calculation, using the base 8 of 64 points)
Description: The hardware configuration consists of six parts, namely, an input module, 8-point FFT module, multiplication module, order adjustment module, the output module and total control module.
Among them, the 64 data input module is the main function of the serial input classification, divided into eight lots, each 8 inputs and 8-point FFT module calculation.
8:00 FFT module: FFT is a fast algorithm for DFT, when a large number of points, you can greatly reduce the amount of computation of the DFT. FFT algorithm commonly used mainly two were decimated by time FFT algorithm (DIT-FFT) algorithms and FFT decimation in frequency (DIF-FFT). In our design, we have adopted is based on the frequency of lottery 8:00 FFT algorithm.
Multiplication module: Since rotational symmetry factor, you only need to generate 8 constant factor. But it will reuse some of the units, which af Platform: |
Size: 32768 |
Author:李圣华 |
Hits: