Welcome![Sign In][Sign Up]
Location:
Search - matrix max

Search list

[Process-Threadzy1

Description: 一.算法介绍: **数据结构: 1.可利用资源向量Available 2.最大需求矩阵Max 3.分配矩阵Allocation 4.需求矩阵Need **功能介绍: 模拟实现Dijkstra的银行家算法以避免死锁的出现.分两部分组成: 第一部分:银行家算法(扫描) 1.如果Request<=Need,则转向2 否则,出错 2.如果Request<=Available,则转向3,否则等待 3.系统试探分配请求的资源给进程 4.系统执行安全性算法 第二部分:安全性算法 1.设置两个向量 (1).工作向量:Work=Available(表示系统可提供给进程继续运行所需要的各类资源数目) (2).Finish:表示系统是否有足够资源分配给进程(True:有 False:没有).初始化为False 2.若Finish[i]=False&&Need<=Work,则执行3 否则执行4(I为资源类别) 3.进程P获得第i类资源,则顺利执行直至完成!并释放资源: Work=Work+Allocation Finish[i]=true 转2 4. 若所有进程的Finish[i]=true,则表示系统安全 否则,不安全!-one. Algorithm introduced : ** Data Structure : 1. The resources available vector Available 2. The biggest demand matrix Max 3. Allocation distribution matrix 4. Need ** demand matrix function presentations : Simulation of bankers Dijkstra algorithm to avoid the emergence of deadlock. Composed of two parts : Part I : bankers algorithm (scanning) 1. If Requestlt; = Need, has turned two Otherwise, the two errors. If Requestlt; = Available, has turned three, or wait for the three. System testing requested resource allocation process to four. Safety system for the implementation of the second part of algorithm : a security algorithm. Set up two vector (1). Vector work : Work = Available (expressed system available to the continued operation of the process required number of resources of all ki
Platform: | Size: 7881 | Author: 李琪 | Hits:

[Menu controlmatrilass

Description: if(max<=1e-5) //三角矩阵的对角元等于0则无解 { cout<<\"no inverse array\\n\" exit(0) } if(line!=i) { swap(p,i,line) swap(q,i,line) } for (k=0 k<N k++) -if (maxlt; = 1e-5) / / triangular matrix diagonal yuan equals 0 (coutlt no solution; Lt; "No inverse array \\ n" exit (0)) if (line! = I) (swap (p, i, line) swap (q, i, line)) for (k = 0 KLT; k N)
Platform: | Size: 9422 | Author: lovelywyd2001 | Hits:

[Other resourcetreewave

Description: Included are the files wav1.m, wav2.m, wavecoef.mat and readme. wav2 function implements the tree structured wavelet transform of the input matrix, up to the given level of decomposition. Wav2 uses another function called wav1, which takes the well known wavelet transform of the given matrix. Daubechies wavelet coefficients are used for wavelet transform operation wahich is saved in wavcoeff.mat. -Included are the files wav1.m, wav2.m. wavecoef.mat and readme. wav2 function biennium max the tree structured wavelet transform of t he input matrix. given up to the level of decomposition. Wav2 use s wav1 another function called, which takes the well known wavelet transform of the given matrix. Daubechies wavelet coeffici separations are used for wavelet transform operation w ahich is saved in wavcoeff.mat.
Platform: | Size: 4377 | Author: yupenghui | Hits:

[Mathimatics-Numerical algorithmshertt

Description: 矩阵的最大特征值的幂法. 对于工程计算而言,矩阵的特征值和特征向量都是相当重要和常见的数据,这里给出的幂法是一种常见的求解方法,用的是迭代的思想。 符号说明: 1A为待求的矩阵, 2Uk,Vk为迭代用的列向量。 3最后的最大特征值maxLamda由最后一次的max(Uk)-----求Uk中的绝对值最大的元素的绝对值.所决定。 而maxLamda所对应的特征向量由最后一次迭代的Vk所决定. 主要的想法就是先选一个不为0的初始向量U0!=0,然后按下面的式子迭代。 -matrix eigenvalue of the largest power France. For engineering calculation, Matrix eigenvalues and eigenvectors are very important and common data, here is the power law is a common solution, using the iterative thinking. Symbol : 1A of the question for the matrix, 2Uk, Vk iteration of the column vector. The final three largest eigenvalue maxLamda from last max (uk Hoffmann for the uk the largest absolute value of the absolute value of the element. by decision. While maxLamda corresponding eigenvectors from the last iteration of Vk decision. The main idea was first choice not one of the initial vector 0 U0! = 0, then by the following formula iteration.
Platform: | Size: 3328 | Author: bass | Hits:

[Other resourceqiufeixianxingfangchengzuzuixiaoerchengjiedeguangy

Description: 1.功能 利用广义逆求解无约束条件下的优化问题(C语言) 2.参数说明 int m : 非线性方程组中方程个数 int n : 非线性方程组中未知数个数 double eps1 : 控制最小二乘解的精度要求 double eps2 : 用于奇异值分解中的控制精度要求 double x[n] : 存放非线性方程组解的初始近似值X(0),要求各分量不全为0 int ka : Ka=max{m,n}+1 void (*f)() : 指向计算非线性方程组中各方程左端函数值的函数名(用户自编) void (*s)() : 指向计算雅可比矩阵的函数名 int ngin() : 函数返回一个标志值 3.文件说明 ngin.c函数文件 ngin0.c主函数文件-1. Using generalized inverse function for non-binding under the conditions of optimization problems (C) 2. Parameter Description int m : nonlinear equation group number int n equation : nonlinear equations were unknown number of double eps1 : Least Squares Solutions of control precision double eps2 : for the singular value decomposition of the control precision double x [n] : Nonlinear storage solutions of equations initial approximation of X (0), the requirements for the component failure 0 int ka : Ka = max (m, n) a void (* f) () : Calculation of nonlinear equations at the Group of the equation extreme value of the function name (user self) void (* s) () : at the Jacobian matrix calculation of the function name ngin int () : function returns a value of three signs. This document explains
Platform: | Size: 2396 | Author: 罗坤 | Hits:

[OtherAn Introduction to Matlab

Description: 1 MATLAB 2 2 Starting Up 2 2.1 Windows Systems . . . . . . . . . . 2 2.2 Unix Systems . . . . . . . . . . . . . 2 2.3 Command Line Help . . . . . . . . . 2 2.4 Demos . . . . . . . . . . . . . . . . . 3 3 Matlab as a Calculator 3 4 Numbers & Formats 3 5 Variables 3 5.1 Variable Names . . . . . . . . . . . . 3 6 Suppressing output 4 7 Built{In Functions 4 7.1 Trigonometric Functions . . . . . . . 4 7.2 Other Elementary Functions . . . . . 4 8 Vectors 4 8.1 The Colon Notation . . . . . . . . . 5 8.2 Extracting Bits of a Vector . . . . . 5 8.3 Column Vectors . . . . . . . . . . . . 5 8.4 Transposing . . . . . . . . . . . . . . 5 9 Keeping a record 6 10 Plotting Elementary Functions 6 10.1 Plotting|Titles & Labels . . . . . . 7 10.2 Grids . . . . . . . . . . . . . . . . . . 7 10.3 Line Styles & Colours . . . . . . . . 7 10.4 Multi{plots . . . . . . . . . . . . . . 7 10.5 Hold . . . . . . . . . . . . . . . . . . 7 10.6 Hard Copy . . . . . . . . . . . . . . 8 10.7 Subplot . . . . . . . . . . . . . . . . 8 10.8 Zooming . . . . . . . . . . . . . . . . 8 10.9 Formatted text on Plots . . . . . . . 8 10.10Controlling Axes . . . . . . . . . . . 9 11 Keyboard Accelerators 9 12 Copying to and from Word and other applications 10 12.1 Window Systems . . . . . . . . . . . 10 12.2 Unix Systems . . . . . . . . . . . . . 10 13 Script Files 10 14 Products, Division & Powers of Vectors 11 14.1 Scalar Product (*) . . . . . . . . . . 11 14.2 Dot Product (.*) . . . . . . . . . . . 11 14.3 Dot Division of Arrays (./) . . . . . 12 14.4 Dot Power of Arrays (.^) . . . . . . 12 15 Examples in Plotting 13 16 Matrices|Two{Dimensional Arrays 13 16.1 Size of a matrix . . . . . . . . . . . . 14 16.2 Transpose of a matrix . . . . . . . . 14 16.3 Special Matrices . . . . . . . . . . . 14 16.4 The Identity Matrix . . . . . . . . . 14 16.5 Diagonal Matrices . . . . . . . . . . 15 16.6 Building Matrices . . . . . . . . . . . 15 16.7 Tabulating Functions . . . . . . . . . 15 16.8 Extracting Bits of Matrices . . . . . 16 16.9 Dot product of matrices (.*) . . . . 16 16.10Matrix{vector products . . . . . . . 16 16.11Matrix{Matrix Products . . . . . . . 17 16.12Sparse Matrices . . . . . . . . . . . . 17 17 Systems of Linear Equations 18 17.1 Overdetermined system of linear equations . . . . . . . . . . . . . . . . . . 18 18 Characters, Strings and Text 20 19 Loops 20 20 Logicals 21 20.1 While Loops . . . . . . . . . . . . . . 22 20.2 if...then...else...end . . . . . . 23 21 Function m{ les 23 21.1 Examples of functions . . . . . . . . 24 22 Further Built{in Functions 25 22.1 Rounding Numbers . . . . . . . . . . 25 22.2 The sum Function . . . . . . . . . . . 25 22.3 max & min . . . . . . . . . . . . . . . 26 22.4 Random Numbers . . . . . . . . . . 26 22.5 find for vectors . . . . . . . . . . . . 27 22.6 find for matrices . . . . . . . . . . . 27 23 Plotting Surfaces 27 24 Timing 28 25 On{line Documentation 29 26 Reading and Writing Data Files 29 26.1 Formatted Files . . . . . . . . . . . . 30 26.2 Unformatted Files . . . . . . . . . . 30 27 Graphic User Interfaces 31 28 Command Summary 32
Platform: | Size: 877346 | Author: taffy320 | Hits:

[Process-Threadzy1

Description: 一.算法介绍: **数据结构: 1.可利用资源向量Available 2.最大需求矩阵Max 3.分配矩阵Allocation 4.需求矩阵Need **功能介绍: 模拟实现Dijkstra的银行家算法以避免死锁的出现.分两部分组成: 第一部分:银行家算法(扫描) 1.如果Request<=Need,则转向2 否则,出错 2.如果Request<=Available,则转向3,否则等待 3.系统试探分配请求的资源给进程 4.系统执行安全性算法 第二部分:安全性算法 1.设置两个向量 (1).工作向量:Work=Available(表示系统可提供给进程继续运行所需要的各类资源数目) (2).Finish:表示系统是否有足够资源分配给进程(True:有 False:没有).初始化为False 2.若Finish[i]=False&&Need<=Work,则执行3 否则执行4(I为资源类别) 3.进程P获得第i类资源,则顺利执行直至完成!并释放资源: Work=Work+Allocation Finish[i]=true 转2 4. 若所有进程的Finish[i]=true,则表示系统安全 否则,不安全!-one. Algorithm introduced :** Data Structure : 1. The resources available vector Available 2. The biggest demand matrix Max 3. Allocation distribution matrix 4. Need** demand matrix function presentations : Simulation of bankers Dijkstra algorithm to avoid the emergence of deadlock. Composed of two parts : Part I : bankers algorithm (scanning) 1. If Requestlt; = Need, has turned two Otherwise, the two errors. If Requestlt; = Available, has turned three, or wait for the three. System testing requested resource allocation process to four. Safety system for the implementation of the second part of algorithm : a security algorithm. Set up two vector (1). Vector work : Work = Available (expressed system available to the continued operation of the process required number of resources of all ki
Platform: | Size: 7168 | Author: 李琪 | Hits:

[Menu controlmatrilass

Description: if(max<=1e-5) //三角矩阵的对角元等于0则无解 { cout<<"no inverse array\n" exit(0) } if(line!=i) { swap(p,i,line) swap(q,i,line) } for (k=0 k<N k++) -if (maxlt; = 1e-5)// triangular matrix diagonal yuan equals 0 (coutlt no solution; Lt; "No inverse array \ n" exit (0)) if (line! = I) (swap (p, i, line) swap (q, i, line)) for (k = 0 KLT; k N)
Platform: | Size: 9216 | Author: lovelywyd2001 | Hits:

[Data structsNo11

Description: 本章将首先介绍怎样在算法设计领域应用这一古老的策略,然后将利用这一策略解决如下问题:最小最大问题、矩阵乘法、残缺棋盘、排序、选择和一个计算几何问题——找出二维空间中距离最近的两个点。 -This chapter will first introduce how the field of algorithm design in the application of this ancient strategy, and then will use this strategy to solve the following problem: min max problem, matrix multiplication, incomplete chessboard, sort, select, and a computational geometry problems- to identify two-dimensional space in the nearest two points.
Platform: | Size: 40960 | Author: 张波 | Hits:

[Data structsPrim

Description: 用prim算法实验最小生成树 本程序中用到函数adjg( ),此函数作用是通过接受输入的点数和边数,建立无向图。函数prg( )用于计算并输出无向图的邻接矩阵。函数prim( )则用PRIM算法来寻找无向图的最小生成树 定义了两个数组lowcost[max],closest[max],若顶点k加入U中,则令lowcost[k]=0。 定义二维数组g[ ][ ]来建立无向图的邻接矩阵。 -Prim algorithm using minimum spanning tree of the experimental procedures used in function adjg (), this function is through the acceptance of input points and edges, the establishment of a directed graph. Function of prg () used to calculate and output undirected graph of adjacency matrix. Function prim () is used PRIM Algorithm to find the undirected graph of the minimum spanning tree array defines two lowcost [max], closest [max], if it joined the U of k vertices, then the lowcost [k] = 0. The definition of two-dimensional array g [] [] to create a undirected graph of adjacency matrix.
Platform: | Size: 94208 | Author: Tina612 | Hits:

[Mathimatics-Numerical algorithmswork

Description: 用幂法与反幂法求矩阵的最大最小特征值,以及与某个值相近的特征值,模最小的特征值,条件数与行列式-Power law with power law and anti-matrix eigenvalues of the max-min, as well as the characteristics of a value similar to the value of the smallest modulus eigenvalue condition number and determinant
Platform: | Size: 3072 | Author: maria | Hits:

[Com PortMAXCTRL.code

Description: HoneyWell Max1000系列 软件模拟键盘,可以当做矩阵键盘使用。-HoneyWell Max1000 Series software simulation keyboard, the keyboard can be used as a matrix.
Platform: | Size: 400384 | Author: nulls | Hits:

[matlabmax

Description: 计算任意一个矩阵的模最大最小值。在matlab的m文件编程,实现-Any calculation of maximum and minimum modulus of a matrix. M-file in matlab programming,
Platform: | Size: 11264 | Author: 张飞飞 | Hits:

[Mathimatics-Numerical algorithmsmax

Description: a program to calculate a maximum number in a ny matrix size interactivly
Platform: | Size: 2048 | Author: laith | Hits:

[JSP/JavaMaxCut

Description: This program implement the Max cut Max_Cut algorithm , as a deterministic algorithm using a pair wise method , which force the algorithm for deterministic solution with solution better then |E|/2 the graph is implemented using an adjacent matrix, the nodes are chosen randomaly k = the number of bits for represntation n = 2^k -1 The pair wise method implement as a matrix , using a XOR command, the columns in the matrix represent all of the sub -groups in a pair wise way Good luck Shahar -This program implement the Max cut Max_Cut algorithm , as a deterministic algorithm using a pair wise method , which force the algorithm for deterministic solution with solution better then |E|/2 the graph is implemented using an adjacent matrix, the nodes are chosen randomaly k = the number of bits for represntation n = 2^k -1 The pair wise method implement as a matrix , using a XOR command, the columns in the matrix represent all of the sub -groups in a pair wise way Good luck Shahar
Platform: | Size: 5120 | Author: shahar | Hits:

[VHDL-FPGA-Verilogmatrix-converter

Description: Implementaion of Current Commutation Strategies of Matrix Converters in FPGA and Simulations Using Max+Plus-Implementaion of Current Commutation Strategies of Matrix Converters in FPGA and Simulations Using Max+PlusII
Platform: | Size: 411648 | Author: belghith | Hits:

[AlgorithmCreate-a-logical-sparse-matrix

Description: Fortran版本的MX创建稀疏最大和引擎的应用程序的逻辑矩阵功能-The Fortran version of the mx Create Sparse Logical Matrix function for max and engine apps.
Platform: | Size: 5120 | Author: leron | Hits:

[AI-NN-PRMax-Margin-Semi-NMF

Description: 在NMF中使用SVM的最大边缘思想,提高分类效果。它是有监督的,局限在于2类,当然使用SVM的多类,就会解决该问题。-The resulting basis matrix is used to extract features that maximize the margin of the resulting classifier
Platform: | Size: 196608 | Author: 刘建飞 | Hits:

[Othermax-subrectangle

Description: POJ 52 —— To The Max求子矩阵的所有元素和的最大值-POJ 52- To The Max Qiuzi matrix elements and the maximum
Platform: | Size: 1024 | Author: dlfsjal | Hits:

[assembly languageMax

Description: 超简单,超使用,非常适合初学者的矩阵计算类,通俗易懂。-Super simple, super-use, very suitable for beginners class matrix calculation, easy to understand.
Platform: | Size: 1024 | Author: qs | Hits:
« 12 3 »

CodeBus www.codebus.net