Welcome![Sign In][Sign Up]
Location:
Search - parallel data mining

Search list

[JSP/JavamyApriori

Description: 数据挖掘中并行关联规则中经典Apriori算法的Java源代码实现。-Parallel data mining association rules in the classical Apriori algorithm realize the Java source code.
Platform: | Size: 4096 | Author: 张国祥 | Hits:

[Software EngineeringAdataminingsystem

Description: 一种并行面向对象的数据挖掘系统 本发明提供了避免双重课税协议采矿系统,查出模式,协会,异常和其他统计学结构的数据。该系统包括阅读和显示的数据文件与数据认为,载有物体具备相关的功能。对象就被提取了。模式之间的对象是公认的基于特征。-A parallel object-oriented data mining system of this invention provides a double taxation agreement with the mining system, identify patterns, associations, anomalies and other statistical structure. The system includes reading and display of data files and data view that contains objects with related functions. Objects were extracted. Mode between the object is recognized based on characteristic.
Platform: | Size: 231424 | Author: nikki | Hits:

[Windows DevelopApriori

Description: 关联规则挖掘的研究工作主要包括:Apriori算法的扩展、数量关联规则挖掘、关联规则增量式更新、无须生成候选项目集的关联规则挖掘、最大频繁项目集挖掘、约束性关联规则挖掘以及并行及分布关联规则挖掘算法等,其中快速挖掘与更新频繁项目集是关联规则挖掘研究的重点,也是多种数据挖掘应用中的技术关键,已用于分类规则挖掘和网络入侵检测等方面的研究。研究者还对数据挖掘的理论进行了有益的探索,将概念格和粗糙集应用于关联规则挖掘中,获得了显著的效果。到目前为止,关联规则的挖掘已经取得了令人瞩目的成绩,包括:单机环境下的关联规则挖掘算法;多值属性关联规则挖掘;关联规则更新算法;基于约束条件的关联规则挖掘;关联规则并行及分布挖掘算法等。-Association rule mining research work include: Apriori algorithm for the expansion of the number of association rules mining, incremental updating of association rules, there is no need to generate candidate itemsets of association rule mining, maximal frequent itemsets mining, association rule mining binding, as well as parallel and Distribution of association rule mining algorithm, one of the rapid mining frequent itemsets and updating of association rules mining are the focus of the study, but also a variety of data mining technology in key applications, has been used in classification rules mining and network intrusion detection studies. The researchers also carried out the theory of data mining has made useful explorations, to concept lattice and rough sets in association rule mining applied to obtain significant results. So far, the mining association rules has made remarkable achievements, including: stand-alone environment for mining association rules algorithm many associatio
Platform: | Size: 2056192 | Author: henry | Hits:

[Mathimatics-Numerical algorithmsLabVIEWshujuliupan

Description: 本Demo演示了NI公司LabVIEW图形化开发环境的并行编程模式及高速数据存储和回放。当发生大量的数据连续存储时,使用TDMS格式将数据高速有效的保存再tdms文件中。本软件可以使用仿真数据用于测试系统平稳流盘的速率,还可以采集真实的从NI DAQ板卡采来的数据,并将数据存储在硬盘上。-This Demo shows the NI' s LabVIEW graphical development environment for parallel programming models and high-speed data storage and playback. When a large amount of data is stored continuously, the use of TDMS format for high-speed data to the preservation of an effective re-tdms file. The software can use the simulation data used to test the system, the rate of a smooth flow of disk can also be collected from the NI DAQ boards true to the data mining, and data is stored on the hard disk.
Platform: | Size: 1673216 | Author: 天天一天天 | Hits:

[MPIparallel

Description: 并行程序,并行离散化算法实现,粗糙集数据挖掘程序-Parallel programming, parallel discrete algorithms, rough set data mining program
Platform: | Size: 1121280 | Author: xdw | Hits:

[MPIPARALEL

Description: 并行算法实现,数据挖掘相关 并行算法实现,数据挖掘相关-Parallel algorithms, data mining-related parallel algorithms, data mining-related
Platform: | Size: 1585152 | Author: xdw | Hits:

[Linux-UnixParallel-computing-techniques

Description: 给出了linux集群系统的设计与实现,对并行程序设计中的消息传递机制给出了详细的说明,针对不同并行计算模型,研究了了并行程序设计的方法,结合数据挖掘技术等,给出并行计算平台的构建方法,并且对并行计算技术在化工过程与优化中的应用有很多优秀的观点。资料内容很丰富,对于研究并行技术的朋友有很大帮助。-Given Linux cluster system design and implementation of parallel programming, the message transfer mechanism gives detailed instructions, according to different parallel computing model, and the research indications parallel programming method and combining the data mining technology, etc, are parallel computing platform building method, and to parallel computing technology in the application of chemical process and optimization of a lot of good point of view. Material content is very rich, for studying parallel technology friend helps a lot.
Platform: | Size: 25996288 | Author: 王鹏 | Hits:

[ADO-ODBCDatabase-new-technology

Description: 数据库的新技术,包括数据仓库,数据挖掘,并行数据库等等。-New technologies, including the database of the data warehouse and data mining, parallel database, and so on
Platform: | Size: 244736 | Author: aspirerabbit | Hits:

[Linux-Unixlibpng-1.5.9.tar

Description: 安装libpng libpng-1.5.9.tar 下载-A DOM Tree Alignment Model for Mining Parallel Data from the web
Platform: | Size: 1065984 | Author: lixianghong | Hits:

[VHDL-FPGA-VerilogThe-FPGA-high-speed-data-acquisition

Description: 摘要:介绍了现场可编程门阵列FPGA(Field Programmable Gate Array)器件XCS30的主要特点、技 术参数、内部结构和工作原理,I}述了其在电力系统高速数据采集系统中的应用实例。电力数据采 集装置—馈线终端单元(FTU)需要监测多条线路的电压和电流,实时性要求高,充分利用FPGA 的并行处理能力,对输入信号实行同时采样、分时进行A/D转换,通过在FPGA片上构建的DRAM 进行数据的快速传输。FPGA在系统中承担了较多的实时任务,使DSP芯片TMS320F2812可以在 每个周期时间(20 ms)内完成所有线路的快速傅里叶计算,调用故障分析处理子程序。FPGA降低 了DSP的负荷率.系统的可靠性得到了提高.实际产品应用于配电自动化系统时.故障定位迅速、准确。 -Abstract: this paper introduces the Field reprogrammable Array FPGA (Field Programmable Gate Array) devices XCS30 the main characteristics and skills Technique parameters, internal structure and working principle, I in its power of} system high speed data acquisition system of application examples. Power data mining Set device-feeder terminal units (FTU) the need to monitor several routes of voltage and current, high real time requirement, make full use of FPGA The parallel processing ability, to the input signal and the sampling, points to A/D conversion, through the FPGA in setting up A piece of DRAM Data fast transmission. FPGA in system for more real-time tasks, make the digital signal processor (DSP) TMS320F2812 can be in Each cycle time (20 ms) all the finish line fast Fourier calculation, analysis on fault processing procedure call. FPGA reduce The load rate of DSP. Of the reliability of the system improved. The actual products used in power distribution
Platform: | Size: 88064 | Author: 刘恒 | Hits:

[Mathimatics-Numerical algorithmspingxingzuobiao

Description: 基于平行坐标的可视化交互分类,随着数据挖掘的发展,可视化数据挖掘逐渐兴起,该文章描述了基于平行坐标的高维数据可视化-Interactive classification based on parallel coordinates visualization, with the development of data mining, visualization, data mining gradually on the rise, the article describes the high-dimensional data visualization based on parallel coordinates
Platform: | Size: 4705280 | Author: liukun | Hits:

[JSP/Javasrc

Description: 基于将数据挖掘与并行技术结合,学习数据挖掘中关联规则算法,用java编写出最高效的apriori改进算法,用ubuntu上的eclipse作为开发平台,通过在eclipse上安装hadoop插件的方法建立并行平台。-Based on the data mining combined with parallel technology, learning algorithms in data mining association rules, using Java to write out the most efficient apriori algorithm, using ubuntu on eclipse as a development platform, set up by using the method of install hadoop in the eclipse plug-in parallel platform.
Platform: | Size: 7168 | Author: 唐龙品 | Hits:

[matlabDeepLearnToolbox_CNN_lzbV2.0

Description: DeepLearnToolbox_CNN_lzbV2.0 深度学习,卷积神经网络,Matlab工具箱 参考文献: [1] Notes on Convolutional Neural Networks. Jake Bouvrie. 2006 [2] Gradient-Based Learning Applied to Document Recognition. Yann LeCun. 1998 [3] https://github.com/rasmusbergpalm/DeepLearnToolbox 作者:陆振波 电子邮件:luzhenbo2@qq.com 个人博客: http://blog.sina.com.cn/luzhenbo2 毕业院校:海军工程大学,船舶与海洋工程(水声工程),博士 精通方向:数据挖掘,数字信号(图像、视频)处理,人工智能与模式识别,群体智能优化,非线性与混沌,支持向量机,Matlab与VC++混编 擅长技能:战略规划,团队管理,C,C++,Matlab,OpenCV,DSP,并行计算,图像处理,模式识别,机器学习,智能视觉,神经网络,人脸检测,行人检测,车牌识别,机器视觉,特征提取,支持向量机,无人驾驶,自动驾驶,智能眼镜,辅助驾驶,ADAS,AdaBoost,LBP,HOG,MeanShift,目标检测,目标识别,目标跟踪,数据挖掘,大数据 -DeepLearnToolbox CNN lzbV2.0 Deep Learning, convolution neural network, Matlab toolbox reference: [1] Notes on Convolutional Neural Networks. Jake Bouvrie. 2006 [2] Gradient-Based Learning Applied to Document Recognition. Yann LeCun. 1998 [3] https://github.com/rasmusbergpalm/DeepLearnToolbox Author: Lu Zhenbo E-mail: luzhenbo2@qq.com Personal blog: http://blog.sina.com.cn/luzhenbo2 Graduated: Naval University of Engineering, Naval Architecture and Marine Engineering (Underwater Acoustic), Dr. Proficient direction: data mining, digital signal (image, video) processing, artificial intelligence and pattern recognition, swarm intelligence optimization, nonlinear and chaotic, support vector machines, Matlab and VC++ mixed Good skills: strategic planning, team management, C, C++, Matlab, OpenCV, DSP, parallel computing, image processing, pattern recognition, machine learning, intelligent vision, neural networks, face detection, pedestrian detection, lice
Platform: | Size: 980992 | Author: 陆振波 | Hits:

CodeBus www.codebus.net