CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - select un
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Search - select un - List
[
Internet-Network
]
select
DL : 0
unix/linux系列中select模型的经典代码,可惜不是c++写的。-unix/linux series select classic model code, but not c++ written.
Update
: 2025-02-19
Size
: 15kb
Publisher
:
dzlei
[
Linux-Unix
]
Screenshot.tar
DL : 0
Screenshot是一个基于Qt4跨平台的截图工具,可以用鼠标选择,可以另存为-Screenshot is based on a Qt4 cross-platform screenshot tool, you can use the mouse to select, you can save as
Update
: 2025-02-19
Size
: 315kb
Publisher
:
Killua
[
matlab
]
LW_utux0
DL : 0
function [ue,un]=LW_utux0(v,dt,t) 一个简单的双曲型偏微分方程: ut + ux = 0 初始条件为: u(x,0) = 1, x≤0 = 0, x>0. 边界条件为: u(-1,t)=1,u(1,t)=0. 本题要求: 使用Lax-Windroff method,选择 v=0.5, 计算并画出当dt=0.01和0.0025时, 方程在t=0.5,x在(-1,1)时的数值解和精确解 输入: v--即a*dt/dx dt--数值格式的时间步 t--要求解的时间 输出: ue--在时间t时的1×N精确解矩阵 un--在时间t时的1×N数值解矩阵 输出图像: 精确解和数值解的图像-function [ue, un] = LW_utux0 (v, dt, t) A simple hyperbolic partial differential equation: ut+ ux = 0 initial conditions: u (x, 0) = 1, x ≤ 0 = 0, x> 0 boundary conditions: u (-1, t) = 1, u (1, t) = 0 of the questions requires: using the Lax-Windroff method, select v =.. 0.5, calculate and draw when dt = 0.01 and 0.0025, equation t = 0.5, x numerical solution at (-1,1) and the exact solution when input: v- that is a* dt/dx dt- time step numerical format t- of output required time solution: ue- 1N exact solution matrix at time t un- 1N value at time t when the solution matrix output image: and numerical solutions precise image
Update
: 2025-02-19
Size
: 1kb
Publisher
:
kingofhevil
[
matlab
]
LW_utux0_2
DL : 0
function [ue,un]=LW_utux0_2(v,dt,t) 一个简单的双曲型偏微分方程: ut + ux = 0 初始条件为: u(x,0) = exp[-10(4x-1)^2] 边界条件为: u(-1,t)=0,u(1,t)=0. 本题要求: 使用Lax-Windroff格式,选择 v=0.5, 计算并画出当dt=0.01和0.0025时, 方程在t=0.5,x在(-1,1)时的数值解和精确解 输入: v--即a*dt/dx dt--数值格式的时间步 t--要求解的时间 输出: ue--在时间t时的1×N精确解矩阵 un--在时间t时的1×N数值解矩阵 输出图像: 精确解和数值解的图像-function [ue, un] = LW_utux0_2 (v, dt, t) A simple hyperbolic partial differential equation: ut+ ux = 0 initial conditions: u (x, 0) = exp [- 10 (4x-1) ^ 2] of the boundary conditions: u (-1, t) = 0, u (1, t) = 0 of the required title: using the Lax-Windroff format, select v = 0.5, calculate and draw when dt = 0.01 and 0.0025, equation t = 0.5, x numerical solution at (-1,1) and the exact solution when input: v- that is a* dt/dx dt-- the time-step numerical format t- the time to be solved Output: ue- 1N exact solution at time t matrix un- 1N numerical solution matrix of the output image at time t : image and numerical solutions of the exact solution
Update
: 2025-02-19
Size
: 1kb
Publisher
:
kingofhevil
[
matlab
]
LW_utux0_3
DL : 0
function un=LW_utux0_3(dx,t) Burgers equation: ut + (1/2*u^2)x = 0 初始条件为: u(x,0) = exp[-10(4x-1)^2] 边界条件为: u(0,t)=0,u(1,t)=0 本题要求: 使用Lax-Windroff格式,选择 dx=0.01, 计算并画出当 t=0.15,和t=0.3时的数值解 输入: dx--数值格式的x轴上的分割 r--r=dt/dx,本题预设r=0.5 t--要求解的时间 输出: un--在时间t时的1×N数值解矩阵 输出图像: 数值解的图像-function un = LW_utux0_3 (dx, t) Burgers equation: ut+ (1/2* u ^ 2) x = 0 Initial conditions: u (x, 0) = exp [-10 (4x- 1) ^ 2] boundary conditions: u (0, t) = 0, u (1, t) = 0 of the questions asked: using the Lax-Windroff format, select dx = 0.01, calculated and drawn as t = 0.15, and t = 0.3 of the numerical solution of input: dx- x-axis numerical format partition r- r = dt/dx, the title by default r = 0.5 t- to be solved Time Output: un- 1N numerical solution matrix of the output image at time t: Numerical Solution of the image
Update
: 2025-02-19
Size
: 1kb
Publisher
:
kingofhevil
[
WEB Code
]
Select-
DL : 0
javascript 全选和全不选的功能。纯javascript写的,复选框全选和全不选。-javascript and un function
Update
: 2025-02-19
Size
: 1kb
Publisher
:
zyqhnz
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.