Location:
Search - select un
Search list
Description: unix/linux系列中select模型的经典代码,可惜不是c++写的。-unix/linux series select classic model code, but not c++ written.
Platform: |
Size: 15360 |
Author: dzlei |
Hits:
Description: Screenshot是一个基于Qt4跨平台的截图工具,可以用鼠标选择,可以另存为-Screenshot is based on a Qt4 cross-platform screenshot tool, you can use the mouse to select, you can save as
Platform: |
Size: 322560 |
Author: Killua |
Hits:
Description: function [ue,un]=LW_utux0(v,dt,t)
一个简单的双曲型偏微分方程:
ut + ux = 0
初始条件为:
u(x,0) = 1, x≤0
= 0, x>0.
边界条件为:
u(-1,t)=1,u(1,t)=0.
本题要求:
使用Lax-Windroff method,选择 v=0.5, 计算并画出当dt=0.01和0.0025时,
方程在t=0.5,x在(-1,1)时的数值解和精确解
输入:
v--即a*dt/dx
dt--数值格式的时间步
t--要求解的时间
输出:
ue--在时间t时的1×N精确解矩阵
un--在时间t时的1×N数值解矩阵
输出图像:
精确解和数值解的图像-function [ue, un] = LW_utux0 (v, dt, t) A simple hyperbolic partial differential equation: ut+ ux = 0 initial conditions: u (x, 0) = 1, x ≤ 0 = 0, x> 0 boundary conditions: u (-1, t) = 1, u (1, t) = 0 of the questions requires: using the Lax-Windroff method, select v =.. 0.5, calculate and draw when dt = 0.01 and 0.0025, equation t = 0.5, x numerical solution at (-1,1) and the exact solution when input: v- that is a* dt/dx dt- time step numerical format t- of output required time solution: ue- 1N exact solution matrix at time t un- 1N value at time t when the solution matrix output image: and numerical solutions precise image
Platform: |
Size: 1024 |
Author: kingofhevil |
Hits:
Description: function [ue,un]=LW_utux0_2(v,dt,t)
一个简单的双曲型偏微分方程:
ut + ux = 0
初始条件为:
u(x,0) = exp[-10(4x-1)^2]
边界条件为:
u(-1,t)=0,u(1,t)=0.
本题要求:
使用Lax-Windroff格式,选择 v=0.5, 计算并画出当dt=0.01和0.0025时,
方程在t=0.5,x在(-1,1)时的数值解和精确解
输入:
v--即a*dt/dx
dt--数值格式的时间步
t--要求解的时间
输出:
ue--在时间t时的1×N精确解矩阵
un--在时间t时的1×N数值解矩阵
输出图像:
精确解和数值解的图像-function [ue, un] = LW_utux0_2 (v, dt, t) A simple hyperbolic partial differential equation: ut+ ux = 0 initial conditions: u (x, 0) = exp [- 10 (4x-1) ^ 2] of the boundary conditions: u (-1, t) = 0, u (1, t) = 0 of the required title: using the Lax-Windroff format, select v = 0.5, calculate and draw when dt = 0.01 and 0.0025, equation t = 0.5, x numerical solution at (-1,1) and the exact solution when input: v- that is a* dt/dx dt-- the time-step numerical format t- the time to be solved Output: ue- 1N exact solution at time t matrix un- 1N numerical solution matrix of the output image at time t : image and numerical solutions of the exact solution
Platform: |
Size: 1024 |
Author: kingofhevil |
Hits:
Description: function un=LW_utux0_3(dx,t)
Burgers equation:
ut + (1/2*u^2)x = 0
初始条件为:
u(x,0) = exp[-10(4x-1)^2]
边界条件为:
u(0,t)=0,u(1,t)=0
本题要求:
使用Lax-Windroff格式,选择 dx=0.01, 计算并画出当
t=0.15,和t=0.3时的数值解
输入:
dx--数值格式的x轴上的分割
r--r=dt/dx,本题预设r=0.5
t--要求解的时间
输出:
un--在时间t时的1×N数值解矩阵
输出图像:
数值解的图像-function un = LW_utux0_3 (dx, t) Burgers equation: ut+ (1/2* u ^ 2) x = 0 Initial conditions: u (x, 0) = exp [-10 (4x- 1) ^ 2] boundary conditions: u (0, t) = 0, u (1, t) = 0 of the questions asked: using the Lax-Windroff format, select dx = 0.01, calculated and drawn as t = 0.15, and t = 0.3 of the numerical solution of input: dx- x-axis numerical format partition r- r = dt/dx, the title by default r = 0.5 t- to be solved Time Output: un- 1N numerical solution matrix of the output image at time t: Numerical Solution of the image
Platform: |
Size: 1024 |
Author: kingofhevil |
Hits:
Description: javascript 全选和全不选的功能。纯javascript写的,复选框全选和全不选。-javascript and un function
Platform: |
Size: 1024 |
Author: zyqhnz |
Hits: