Introduction - If you have any usage issues, please Google them yourself
Following the intuition that the image variation of
faces can be effectively modeled by low dimensional
linear spaces, we propose a novel linear subspace
learning method for face analysis in the framework of
graph embedding model, called Semi-supervised
Graph Embedding (SGE). This algorithm builds an
adjacency graph which can best respect the geometry
structure inferred from the must-link pairwise
constraints, which specify a pair of instances belong to
the same class. The projections are obtained by
preserving such a graph structure. Using the notion of
graph Laplacian, SGE has a closed solution of an
eigen-problem of some specific Laplacian matrix and
therefore it is quite efficient. Experimental results on
Yale standard face database demonstrate the
effectiveness of our proposed algorithm.