Introduction - If you have any usage issues, please Google them yourself
Bayesian algorithm is based on the Bayes theorem P (H | X) = P (X | H) P (H)/P (X).. For multi-attribute data sets, computing P (X | Ci) of the overhead is very large, in order to reduce the computational complexity, we do conditional independence assumption that a given tuple class label, it is assumed that property values conditionally independent of each other, that does not exist in the inter-attribute dependencies. This procedure is only an implementation of algorithm, according to training data classifier training