Description: First, the direct training of BP network with GA the weight algorithm
Main program: gafault.m It includes the following routines:
1. BP network initialization: nninit.m-- given P, T, R, S1, S2
2. Fitness calculation functions: gabpEval.m
3. Of genetic algorithms for the BP network codec corresponding weights, the threshold function: gadecod.m
Second, with the GA first aim at the weight of BP network, and then direct the training of pure BP mixture of BP algorithm GA-BP
Main program: gabpfault.m It includes the following routines:
1. Network initialization: nninit.m-- given P, T, R, S1, S2
2. Fitness calculation functions: gabpEval.m
3. Of genetic algorithms for the BP network codec corresponding weights, the threshold function: gadecod.m
3, pure BP
Main program: (1) bpfault.m on the MATLAB5.2
(2) bpfault.m the MATLAB6.5 for the subsequently added
- [GA-BP] - genetic algorithm-- the theory, applicat
- [gene_bpnn_xor] - Standard genetic algorithm code, the fol
- [mianyi] - Immune algorithm and genetic algorithm i
- [PSO] - Particle swarm optimization (PSO) is a p
- [agent5] - Improved Artificial Field Method
- [MATLAB] - MATLAB Genetic Algorithm Toolbox and its
- [OFDM] - Relatively complete simulation of OFDM c
- [xinhao3] - Signal processing software used, vibrati
File list (Check if you may need any files):
GA训练BP网络的权重算法
......................\bpfault.m
......................\bppfault.m
......................\nninit.m
......................\readme.doc
......................\用GA先求BP网络的权重,再用纯BP直接训练BP的混合GA-BP算法
......................\........................................................\gabpEval.m
......................\........................................................\gabpfault.m
......................\........................................................\gadecod.m
......................\........................................................\nninit.m
......................\用GA直接训练BP网络的权重算法
......................\............................\gabpEval.m
......................\............................\gadecod.m
......................\............................\gafault.m
......................\............................\nninit.m
......................\遗传算法和神经网络在导弹测试设备故障诊断中的应用研究.doc