Description: Verilog HDL: Magnitude
For a vector (a,b), the magnitude representation is the following:
A common approach to implementing these arithmetic functions is to use the Coordinate Rotation Digital Computer (CORDIC) algorithm. The CORDIC algorithm calculates the trigonometric functions of sine, cosine, magnitude, and phase using an iterative process. It is made up of a series of micro-rotations of the vector by a set of predetermined constants, which are powers of two. Using binary arithmetic, this algorithm essentially replaces multipliers with shift and add operations. In a Stratix™ device, it is possible to calculate some of these arithmetic functions directly, without having to implement the CORDIC algorithm.
-Verilog HDL : For a vector magnitude (a, b), the magnitude representation is the following : A common approach to implementing thes e arithmetic functions is to use the Coordinate Rotation Digital Computer (CORDIC) algorithm. The CORDIC algorithm calculates the trigonome tric functions of sine, cosine, magn itude, and phase using an iterative process. It i 's made up of a series of micro-rotations of the v ector by a set of predetermined cons tants, which are powers of two. Using binary ar praxiology metic, this algorithm essentially replaces m ultipliers with shift and add operations. In a Stratix Platform: |
Size: 12917 |
Author:郝晋 |
Hits:
Description: Verilog HDL: Magnitude
For a vector (a,b), the magnitude representation is the following:
A common approach to implementing these arithmetic functions is to use the Coordinate Rotation Digital Computer (CORDIC) algorithm. The CORDIC algorithm calculates the trigonometric functions of sine, cosine, magnitude, and phase using an iterative process. It is made up of a series of micro-rotations of the vector by a set of predetermined constants, which are powers of two. Using binary arithmetic, this algorithm essentially replaces multipliers with shift and add operations. In a Stratix™ device, it is possible to calculate some of these arithmetic functions directly, without having to implement the CORDIC algorithm.
-Verilog HDL : For a vector magnitude (a, b), the magnitude representation is the following : A common approach to implementing thes e arithmetic functions is to use the Coordinate Rotation Digital Computer (CORDIC) algorithm. The CORDIC algorithm calculates the trigonome tric functions of sine, cosine, magn itude, and phase using an iterative process. It i 's made up of a series of micro-rotations of the v ector by a set of predetermined cons tants, which are powers of two. Using binary ar praxiology metic, this algorithm essentially replaces m ultipliers with shift and add operations. In a Stratix Platform: |
Size: 12288 |
Author:郝晋 |
Hits:
Description: VHDL实现的桶型移位器,能在一个时钟周期实现对数据的(0-12位)算术右移-VHDL implementation of a barrel—shifter, able to achieve at one clock cycle of data (0-12 bit) Arithmetic Shift Right Platform: |
Size: 1024 |
Author:过时无双 |
Hits:
Description: 用Verilog语言写一个简单的移位寄存器,可以进行算术移位和逻辑移位。-Verilog language used to write a simple shift register, can be arithmetic shift and logical shift. Platform: |
Size: 314368 |
Author:sunying |
Hits: