Title:
ANN-in-maneuvering-target-tracking Download
Description: The maneuver of the maneuvering target is uncertain. The maneuvering frequency is constantly changeable, but traditionally it is beforehand determined as a constant based on the target state estimation in the state model of the maneuvering target. The maneuver of the maneuvering target makes the kinematics equation of the target model mismatch with the practical motion model and the tracking error will be increased. Based on the advantages of the self-learning, the rapid convergence rate and the nonlinear approximation ability of the wavelet neural network, it was put forward to be used in the field of target tracking in the paper. The new residual is used as the input of the wavelet neural network, the output of the network is used to adjust adaptively the maneuvering frequency of the CS model. The algorithm is more close to the real state of the target. The simulation results showed that tracking error can be reduced and the tracking accuracy can be improved.
File list (Check if you may need any files):
8.2基于小波神经网络的机动频率调整v(k)=(0.0001x(k)+10)w(k).m